Эта статья выставлена на рецензию

Спутниковая антенна

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Антенны оператора сети спутниковой связи

Спутниковая антенна (антенна спутниковой связи) — антенна, используемая для приёма и (или) передачи радиосигналов между наземными станциями и искусственными спутниками Земли, в более узком значении — антенна, используемая при организации связи с ретрансляцией через спутники. В спутниковой связи используются различные типы антенн, самый известный — зеркальные параболические антенны («спутниковые тарелки»), массово применяемые для приёма спутникового ТВ-вещания и в спутниковой связи. В зависимости от назначения системы спутниковой связи могут применяться и другие типы антенн.

Типы антенн земных станций спутниковой связи[править | править код]

На земных станциях спутниковой связи применяются антенны различных типов. Конкретный тип антенны зависит от диапазона, в котором организуется связь, от требуемого усиления антенной системы и от её назначения.

Слабонаправленные антенны[править | править код]

Слабонаправленные (также всенаправленные[en]) антенны[1] используются для связи через низкоорбитальные и геостационарные спутники в спутниковых телефонах, спутниковом радио, приёме сигналов систем спутниковой навигации и других приложениях, где нет возможности непрерывно ориентировать антенну. Такие антенны имеют широкую диаграмму направленности, что приводит к приёму большого количества шумов (высокой шумовой температуре антенны) и малому отношению сигнал/шум для полезного сигнала на входе приёмника, а следовательно и к низкой пропускной способности системы в целом.

Антенны бегущей волны[править | править код]

Антенны бегущей волны[2] и близкие к ним (спиральные, волновой канал, логопериодические и т. д.), применяются в диапазонах метровых (англ. VHF) и дециметровых (англ. UHF) волн[3] для приёма телеметрии и связи со спутниками на низких орбитах, обмена информацией с метеорологическими спутниками, в любительской радиосвязи через спутники, для некоторых специальных видов спутниковой связи.

Зеркальные антенны[править | править код]

Зеркальные антенны — наиболее распространённый класс спутниковых антенн[4].

Основные типы зеркальных антенн

Зеркальные антенны применяются в различных диапазонах волн спутниковой связи, от дециметровых до Ka-диапазона, и на различных типах станций — от систем индивидуального ТВ-приёма до центров космической связи. Могут иметь размер от десятков сантиметров[5] до десятков метров[6]. Усиление зеркальной антенны зависит от отношения её апертуры к длине волны, точности изготовления зеркала (чем выше частоты, на которых работает антенна, тем большая точность требуется), коэффициента использования поверхности, зависящего от выбранной конструкции антенны и характеристик её облучателя, точности установки частей антенны (зеркала, облучателя, контррефлектора, если есть) относительно друг друга[7].

Зеркало антенны изготавливается из электропроводящего материала (сталь, алюминиевые сплавы) с антикоррозионным покрытием. Для снижения ветровых нагрузок и уменьшения веса зеркала может использоваться металлическая сетка (при условии, что диаметр отверстий не превышает 0.1*λ, где λ — длина волны[8]). По технологическим соображениям, таким, как стоимость производства, вес, прочность, зеркала могут изготавливаться из композитных материалов (углепластик, стеклопластик) или отливаться из термопласта. В случае, если зеркало изготавливается из непроводящего материала, в его структуру дополнительно вводится отражающая поверхность из металлической фольги, сетки, электропроводяшей краски[8].

Один и тот же рефлектор (зеркало) может использоваться в различных диапазонах частот при установке на него различных облучателей и выполнения требований по точности изготовления зеркала для самого высокочастотного (коротковолнового) из используемых диапазонов. Чем в более высокочастотном диапазоне используется антенна, тем у́же её диаграмма направленности и выше усиление при одном и том же размере зеркала[7].

Кроме рефлектора и облучателя, в состав антенны входит опорно-поворотное устройство, с помощью которого производится наведение антенны на спутник.

Осесимметричные антенны[править | править код]

Осесимметричные антенны имеют симметричное зеркало, фокус которого расположен на оси симметрии. У прямофокусной антенны (англ. Prime Focus) облучатель устанавливается в точке фокуса, перед зеркалом. Также используются двухзеркальные схемы, в которых на оси антенны устанавливается небольшое дополнительное зеркало-контррефлектор, а облучатель располагается со стороны зеркала в фокусе контррефлектора. Схемы с контррефлектором сложнее в расчёте, изготовлении и настройке, но позволяют уменьшить шумовую температуру антенны, в некоторых случаях улучшить коэффициент использования поверхности и сделать антенну более компактной. Облучатель или контррефлектор и его крепления затеняют часть зеркала антенны, что приводит к уменьшению эффективной апертуры. Поэтому такие схемы применяют в основном на достаточно больших (диаметром от 1,5 — 1,8 метра) антеннах, процент затеняемой площади которых невелик.

Осесимметричные схемы применяются также для антенн малого диаметра мобильных спутниковых станций[9][10][11]. На таких антеннах часто используется двухзеркальная схема с «кольцевым фокусом»[12], позволяющая увеличить коэффициент использования поверхности, cделать антенну более компактной и упростить её сборку[13].

Офсетные антенны[править | править код]

Офсетные антенны, или антенны со смещённым облучателем, получаются путём вырезки из параболического зеркала. Диаграмма направленности такой антенны смещена относительно оси её зеркала на угол, называемый углом офсета (или углом смещения).

Основное преимущество офсетных антенн в том, что облучатель и элементы его крепления не перекрывают собой направление на спутник и не затеняют зеркало антенны, что позволяет увеличить коэффициент использования поверхности[14]. Дополнительное преимущество — такая антенна при наведении на спутник устанавливается под меньшим углом к вертикали, чем осесимметричная, что уменьшает влияние на неё атмосферных осадков (налипание снега, льда).

По офсетной схеме построены большинство антенн небольшого размера (до 2,5 метров), используемых в приёме спутникового ТВ и спутниковой связи, поскольку на таких размерах возможность полного использования зеркала антенны, без затенения его облучателем, даёт заметный выигрыш в усилении.

Офсетная конструкция имеет и ряд недостатков[14]. Офсетные зеркала большого размера значительно сложнее в изготовлении и сборке, чем осесимметричные.

Офсетные антенны при работе с линейной поляризацией имеют худший уровень поляризационной развязки[15], что может приводить к увеличению уровня помех от сигналов соседней поляризации на том же спутнике. При работе с круговой поляризацией диаграмма направленности офсетной антенны отличается для левой и правой поляризаций, поэтому при смене рабочей поляризации требуется и одновременная подстройка наведения антенны, причём эффект тем заметнее, чем больше размер зеркала.

При малых углах вертикального наведения наклон офсетной антенны к вертикали становится отрицательным — зеркало «смотрит в землю», хотя нацелено на спутник, находящийся выше горизонта. При этом конструкция опорно-поворотного устройства может ограничивать минимальный угол наведения из-за того, что нижний край зеркала упирается в опору. Минимальный угол видимости спутника над горизонтом для различных офсетных антенн составляет от 0° до 10°[16][17][18].

Фазированные антенные решётки[править | править код]

Фазированные антенные решётки (ФАР) используются для создания компактных антенн различных диапазонов.

На основе ФАР строятся в основном спутниковые антенны с малой апертурой[13]. Такие антенны имеют ряд ограничений[13][19]. Они могут работать только в одном узком диапазоне частот (например, работа во всем диапазоне от 10,7 до 12,75 ГГц с одной антенной на базе ФАР невозможна), сложны в разработке и изготовлении и имеют более высокую цену. В то же время на базе ФАР возможно создавать компактные спутниковые терминалы, они используются в составе носимых и подвижных станций[20] диапазонов Ku и Ka, портативных терминалов Inmarsat BGAN[en] (L-диапазон)[21], носимых спутниковых станций специального назначения[22].

Также на базе ФАР выпускаются плоские компактные антенны для домашнего приёма спутникового ТВ[19][23], которые требуют для установки гораздо меньше места, чем классические «тарелки» сравнимой апертуры. Это позволяет размещать их не только на улице, но и в помещении (на окне, балконе, лоджии и т. п.) при условии, что место установки обеспечивает видимость спутника[24].

Наведение спутниковых антенн[править | править код]

Для работы через спутник прежде всего необходимо, чтобы между антенной и спутником обеспечивалась прямая видимость (не было препятствий, мешающих прохождению радиосигнала). При выполнении этого условия слабонаправленные антенны наведения не требуют. Направленная антенна должна быть ориентирована таким образом, чтобы направление на спутник совпадало с максимумом её диаграммы направленности. Малые антенны в низкочастотных диапазонах (L,C) имеют широкую диаграмму направленности. Например, для портативного терминала Inmarsat BGAN ширина ДН от 30° до 60°[21]. Такую антенну достаточно грубо сориентировать в нужном направлении, чтобы спутник попадал в ограниченный её диаграммой сектор. Антенны с узкой диаграммой направленности и высоким усилением требуют максимально точного наведения.

Фиксированное наведение на геостационарные спутники[править | править код]

Геостационарные спутники расположены над экватором и обращаются вокруг Земли с периодом, равным периоду вращения Земли. В идеальном случае геостационарный спутник абсолютно неподвижен относительно земного наблюдателя, и сопровождение антенной спутника не требуется. Антенну достаточно навести один раз и зафиксировать, дополнительное наведение потребуется только в случае смещения антенны. В реальности геостационарные спутники удерживаются в своей точке стояния с определённой точностью, составляющей для современных аппаратов менее 0,1°[25]. Если диаграмма направленности антенны в несколько раз шире, чем максимальное отклонение аппарата от точки стояния, то видимым смещением спутника можно пренебречь и считать его неподвижным. Например, ширина главного лепестка диаграммы направленности в Ku-диапазоне для антенны диаметром 2,4 метра — около 0,7°[26], для антенн диаметром 0,9 метра — более 1,5°[27], для антенн меньшего размера — ещё больше. С такими антеннами, используемыми на VSAT-станциях и при приёме спутникового ТВ, дополнительного сопровождения спутника после наведения не требуется.

Для наведения антенны нужно установить углы места (возвышения над горизонтом) и азимута, определяющие направление на спутник[28]. При установке осесимметричной антенны угол наклона плоскости антенны к вертикали равен углу места. При установке офсетной антенны угол наклона её плоскости к вертикали меньше, чем угол места, на величину офсета. Для линейной поляризации требуется установка третьего параметра — угла поворота поляризации, который также зависит от взаимного расположения антенны и спутника. Для каждой точки на земной поверхности требуемые углы места, азимута и поворота поляризации рассчитываются, исходя из географических координат антенны и точки стояния спутника. Для расчёта могут использоваться специальные программы или сайты, на которых направление на спутник отображается на карте. После установки расчётных углов наведения и захвата сигнала производится точная подстройка положения антенны до достижения максимального уровня приёма.

Многолучевые антенны[править | править код]

Многолучевые системы позволяют формировать на одной антенне несколько диаграмм направленности и работать с несколькими спутниками на геостационарной орбите без поворота антенны. Многолучевые антенны могут строиться на базе стандартных параболических зеркал (мультифид), на базе зеркал сферического[29][19] и тороидального (тороидально-параболического) профиля, на базе фазированных антенных решёток[19][30][31].

Мультифид[править | править код]

«Мультифид» — несколько облучателей на одной антенне
Основная статья: Мультифид

При смещении облучателя в фокальной плоскости параболического зеркала диаграмма направленности антенны отклоняется в противоположную сторону с одновременным уменьшением усиления, тем бо́льшим, чем сильнее смещён облучатель. На этом основана многолучевая система на основе стандартной зеркальной антенны — «мультифид». Система строится из нескольких облучателей (конвертеров), расположенных со смещением от фокуса параболической антенны таким образом, что каждый принимает сигнал со спутников в разных орбитальных позициях. «Мультифидом» также называют конструктивный элемент (кронштейн), на котором крепятся дополнительные конвертеры. Максимально возможное отклонение облучателя от точки фокуса параболической антенны составляет около 10°[29].

Тороидальная антенна[править | править код]

Основная статья: Тороидальная антенна

Для одновременной работы со многими спутниками в широком секторе геостационарной орбиты используются тороидальные антенны[32]. Тороидальные антенны Simulsat[33] или Vertex Model 700-70TCK[34] позволяют одновременно принимать до 35 спутников, расположенных на дуге шириной 70°. При домашнем приёме спутникового ТВ могут использоваться тороидальные антенны WaveFrontier[35] или аналогичные, позволяющие принимать сигнал с 16 спутников на дуге в 40°.

Моторизованные антенны[править | править код]

Моторизованные приводы наведения антенн используются в следующих случаях:

  • Автоматическое перенаведение антенны на различные спутники
  • Автоматическое наведение на спутник при развёртывании антенны
  • Автоматическое сопровождение спутника
Антенна на полярном подвесе

Перенаведение между спутниками[править | править код]

Автоматическое перенаведение антенны между спутниками используется в спутниковом телевидении для увеличения количества принимаемых программ. При этом используется полярный подвес[en], позволяющий с помощью одного привода одновременно изменять углы азимута и возвышения так, что антенна движется вдоль «дуги Кларка» (линии, на которой находятся все геостационарные спутники при взгляде с Земли). Ось вращения антенны при этом параллельна оси вращения Земли. Использование полярного подвеса требует тщательной предварительной работы по его установке и настройке[36]. Управление приводом полярного подвеса производится стандартным набором команд USALS или Diseqc, поддерживаемом спутниковыми ресиверами и компьютерными спутниковыми тюнерами.

Автоматическое развёртывание и наведение[править | править код]

Спутниковая антенна с автоматическим наведением на передвижной телевизионной станции

Автоматическое наведение используется в возимых или переносных мобильных спутниковых станциях для быстрого установления связи. Для наведения используется отдельное устройство — контроллер[11][37], определяющий координаты антенны с помощью системы спутникового позиционирования (GPS, Глонасс) и вычисляющий углы азимута, места и поворота поляризации для наведения на требуемый спутник. На основании вычисленных углов контроллер устанавливает положение антенны, проверяет захват сигнала со спутника и производит точное донаведение по его максимуму. При необходимости возможно перенаведение с одного спутника на другой, параметры которого также должны иметься в контроллере.

Автоматическое сопровождение спутника[править | править код]

Стабилированные спутниковые антенны для работы на судах

Автоматическое сопровождение спутника — непрерывное удержание его в максимуме диаграммы направленности при движении относительно антенны. Автосопровождение может осуществляться как моторными приводами антенны, так и электронным управлением диаграммой направленности[38]. Для автосопровождения требуется контроллер, управляющий наведением антенны. Автосопровождение применяется в следующих случаях:

  • Станции для связи в движении, устанавливаемые на транспортных средствах (автомобилях, поездах, судах, самолётах). При движении положение антенны относительно спутника непрерывно меняется и требуется её удержание (стабилизация) в нужном направлении. Для удержания направления на спутник на движущихся объектах используются два метода[39]. Первый — непрерывное определение направления, в котором смещается спутник относительно антенны, путём постоянного сканирования (отклонения диаграммы направленности) в узком секторе, не приводящем к существенному ухудшению сигнала. Второй — удержание положения антенны с помощью гироскопов и датчиков ускорений.
  • Большие антенны, ширина диаграммы направленности которых сравнима с возможным отклонением геостационарного спутника от точки стояния[40][41]. При использовании такой антенны без системы сопровождения уровень сигнала будет меняться в течение суток в соответствии с видимым движением спутника на небосклоне. Контроллер автосопровождения отслеживает уровень принимаемого со спутника сигнала и подводит антенну так, чтобы он был максимальным. Для стабильного удержания используется программное предсказание видимого смещения спутника на основании ранее накопленных данных и элементов его орбиты[42].
  • Антенны для работы со спутниками на негеостационарных орбитах. Спутник, находящийся на любой орбите, кроме геостационарной, непрерывно движется относительно земного наблюдателя. Скорость и траектория движения зависят от параметров орбиты. При использовании направленных антенн для работы с такими спутниками требуется их постоянное сопровождение, которое осуществляется на основе информации о местоположении станции и элементах орбиты спутника и может корректироваться по принимаемому сигналу[43].

См. также[править | править код]

Примечания[править | править код]

  1. Mobile Antenna Systems Handbook, 2008, OMNIDIRECTIONAL ANTENNAS FOR MOBILE SATELLITE COMMUNICATIONS.
  2. Jack Browne. Traveling-Wave Antenna Feeds Space Applications (англ.). Microwaves and RF.
  3. RADIO FREQUENCIES FOR SPACE COMMUNICATION (англ.). THE AUSTRALIAN SPACE ACADEMY.
  4. Зеркальные антенны для земных станций спутниковой связи, 2008.
  5. Антенна СТВ-0,4-1,1 0,55 St АУМ. Супрал.
  6. В.И. Катаев. Строительство ЦКС «Дубна» // Встреча : газета. — Дубна, 2011. — Июнь.
  7. 1 2 Зеркальные антенны для земных станций спутниковой связи, 2008, Влияние конструктивных элементов антенны на параметры излучения.
  8. 1 2 Шифрин Я.С. Антенны. — ВИРТА им. Говорова Л.А., 1976.
  9. Marine SAT Systems - VSAT Antennas (англ.). EPAK.
  10. ON-THE-MOVE (англ.). GD SATCOM.
  11. 1 2 Носимый комплекс спутниковой связи. Race Communications.
  12. Зеркальные антенны для земных станций спутниковой связи, 2008, Двухзеркальные антенны с кольцевым фокусом.
  13. 1 2 3 Dr. Andrew Slaney. The Challenges Of Micro-VSAT Design (англ.). SatMagazine.
  14. 1 2 Зеркальные антенны для земных станций спутниковой связи, 2008, Сравнение однозеркальных осесимметричных антенн и антенн типа офсет.
  15. А.Киселев , В.Нагорнов , В.Бобков , М.Ефимов. ПОЛЯРИЗАЦИОННАЯ РАЗВЯЗКА: ВЗГЛЯД ЭКСПЕРТА // Connect! Мир связи : журнал. — 2004. — № 2.
  16. Комплект оборудования. Технические характеристики внешнего блока. StarBlazer.
  17. 1.8 Meter Offset VSAT Antenna (англ.). GD SATCOM.
  18. 1.2M Offset VSAT Dish (англ.). Antesky.
  19. 1 2 3 4 А.Бителева. Антенны для телевизионного приема в СВЧ диапазоне // Телеспутник : журнал. — 1999. — Апрель.
  20. APPLICATIONS OF HYBRID PHASED ARRAY ANTENNAS FOR MOBILE SATELLITE BROADBAND COMMUNICATION USER TERMINALS (англ.). ESA ESTEC.
  21. 1 2 Low Profile BGAN (англ.). Inmarsat.
  22. Невматуллин, Р. А. Применение станций космической связи в вооруженных силах РФ // Наука ЮУрГУ. Секции технических наук : материалы 63-й науч. конф.: Юж.-Урал. гос. ун-т.- Челябинск : Издательский центр ЮУрГУ, 2011.- Т. 1.- С. 237—240.
  23. М. Парнес. Фазированные антенные решетки // Телеспутник : журнал. — 1997. — Август.
  24. Flat antenna test - comparisons. (англ.). REVIEWS-TEST.com.
  25. Спутниковая группировка. ГПКС.
  26. 2.4M C & KU-BAND SERIES 1252 (англ.). Prodelin.
  27. 96 cm Rx/Tx Antenna System (англ.). Skyware Global.
  28. Самостоятельное наведение антенны на спутник. StarBlazer.
  29. 1 2 С. П. Гeруни, Д.М. Сазонов. Шестнадцать антенн в одной // Телеспутник : журнал. — 1997. — Ноябрь.
  30. Слюсар, В.И. Thuraya-1 сквозь призму технических новшеств. // Телемультимедиа. – 2001. - № 5(9). 13 – 18. (2001).
  31. Слюсар, В.И. Фазированная антенная решетка системы Thuraya. //Сети и телекоммуникации. – 2002. - № 5 (24). 54 – 58. (2002).
  32. Распространение радиоволн и антенны спутниковых систем связи, 2015, Тороидальные многолучевые антенны.
  33. SIMULSAT Multibeam Earth Station (англ.). ATCi.
  34. Torus Multiple Band Antenna (англ.). GD SATCOM.
  35. Тороидальная антенна WaveFrontier Toroidal 90. Телегид.
  36. В. Лощинин. Настройка «полярки» - это технология // Телеспутник : журнал. — 1997. — Декабрь.
  37. Satellite Antenna Controllers (англ.). Research Concepts.
  38. ELECTRONICALLY STEERABLE ANTENNAS FOR SATELLITE COMMUNICATIONS (англ.) (недоступная ссылка). Дата обращения 14 марта 2017. Архивировано 23 июня 2017 года.
  39. COMMERCIAL KU-BAND SATCOM ON-THE-MOVE USING A HYBRID TRACKING SCHEME (англ.). MITRE Corporation.
  40. Model 6.3m Cassegrain Antenna (англ.). General Dynamics SATCOM.
  41. 7.3 Meter Earth Station Antenna (англ.). ViaSat.
  42. Earth Station Antenna Tracking System Introduction (англ.). Antesky.
  43. Е.А. Паниди. Технология приёма данных дистанционного зондирования с искусственных спутников Земли с использованием приемной станции УНИСКАН-24. СПбГУ.Научный парк.

Литература[править | править код]

  • О.П.Фролов, В.П.Вальд. Зеркальные антенны для земных станций спутниковой связи (рус.). — Горячая Линия - Телеком, 2008. — ISBN 978-5-9912-0002-8.
  • Kyohei Fujimoto, J. R. James. Antennas for Mobile Satellite Systems // Mobile Antenna Systems Handbook (англ.). — ARTECH HOUSE, 2008. — ISBN 9781596931268.
  • Сомов А.М. Распространение радиоволн и антенны спутниковых систем связи (рус.). — Горячая линия - Телеком, 2015. — ISBN 978-5-9912-0416-3.
  • В.Бобков. Антенны земных станций спутниковой связи (рус.) // Connect! Мир связи : журнал. — 2006. — Апрель.

Ссылки[править | править код]