Фазированная антенная решётка

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Огромная наземная ФАР системы предупреждения о ракетном нападении на Аляске, США

Фазированная антенная решётка — тип антенн, в виде группы антенных излучателей, в которых относительные фазы сигналов изменяются комплексно, так, что эффективное излучение антенны усиливается в каком-то одном, желаемом направлении и подавляется во всех остальных направлениях.

Управление фазами (фазирование) позволяет радару с применяемой ФАР:

  • формировать (при весьма разнообразных расположениях излучателей) необходимую диаграмму направленности (ДН) антенны (например, остронаправленную ДН типа луч);
  • изменять направление луча неподвижной антенны, таким образом осуществляя быстрое (в ряде случаев практически безынерционное) сканирование — качание луча;
  • управлять в определённых пределах формой ДН — изменять ширину луча, интенсивность (уровни) боковых лепестков и т.п. (для этого в ФАР иногда осуществляют также управление и амплитудами волн отдельных излучателей).

Эти (и некоторые другие) свойства ФАР, а также возможность применять для управления ФАР современные средства автоматики и вычислительной электроники обусловили их перспективность и широкое использование в радиосвязи, радиолокации, радионавигации, радиоастрономии и т. д. ФАР, содержащие большое число управляемых элементов, входят в состав различных наземных (стационарных и подвижных), корабельных, авиационных и космических радиоустройств. Ведутся интенсивные разработки в направлении дальнейшего развития теории и техники ФАР и расширения области их применения.

Применение подобных антенных решёток даёт следующие примущества:

История[править | править исходный текст]

Радиолокационная система Н010 Жук

До конца 1980-х годов создание такой системы требовало применения большого количества устройств, из-за чего фазированные решётки, полностью управляемые электроникой, использовались, главным образом, в больших стационарных радарах, типа массивного BMEWS (Ballistic Missile Warning Radar) и несколько меньшего американского морского радара противовоздушной обороны SCANFAR, (развитие AN/SPG-59), установленного на американском тяжелом атомном ракетном крейсере «Лонг-Бич»(англ.) и атомном авианосце «Энтерпрайз». Его потомок SPY-1 Aegis установливался на крейсерах класса Ticonderoga и позже на эсминцах Arleigh Burke. Единственными известными применениями на самолётах был большой радар Заслон (радар) (англ.), установленный на советском перехватчике МиГ-31, и радар нападения на B-1B Lancer[1]. В настоящее время применяется в Су-35 и F-22.

Такие радары не устанавливались на самолётах главным образом из-за их большого веса, поскольку первое поколение технологии фазированных решёток использовало обычную радарную архитектуру. В то время как антенна изменилась, всё остальное ещё оставалось прежним, но были добавлены дополнительные вычислители, чтобы управлять фазовращателями антенны. Это привело к увеличению веса антенны, количества вычислительных модулей, а также повысило нагрузку на систему электропитания.

Установка защитного колпака на ФАР

Выгоды применения фазированных решёток, однако, оправдывали дополнительную стоимость. Фазированные решетки могли в единственной антенне совместить работу нескольких антенн, почти одновременно. Широкие лучи могли использоваться для поиска цели, узкие — для сопровождения, плоские лучи в форме веера для определения высоты, узкие направленные лучи для полёта по ландшафту (B-1B). Во враждебной зоне электронного противодействия выгоды были ещё больше, поскольку фазированные решётки позволяют системе размещать «ноль» диаграммы направленности антенны в направлении источника помех и таким образом блокировать её попадание в приёмник. Другая выгода — отсутствие необходимости механически поворачивать антенну в направлении цели, что позволило повысить скорости обзора пространства на порядки, а также увеличить срок службы системы, так как с введением фазирования частично отпала потребность в громоздких механизмах ориентации полотна в пространстве. Обычно многосторонняя антенна могла обеспечить охват в 360 градусов, неподвижными антеннами, охватывающими все направления сразу.

Эта технология также предоставляла менее очевидные выгоды. Одна могла быстро «осмотреть» маленький участок неба, чтобы увеличить вероятность обнаружения маленькой и скоростной цели, в отличие от медленно вращающейся антенны, которая может сканировать специфический сектор только однажды за оборот (обычно период обзора составляет от 5 до 20 секунд). Цель с малой эффективной площадью рассеяния (ЭПР), например, низко летящую крылатую ракету, почти невозможно заметить при таких условиях. Способность фазированной решётки к почти мгновенному изменению направления и формы луча фактически добавляют целое новое измерение к сопровождению целей, поскольку разные цели могут быть отслежены разными лучами, каждый из которых переплетается во времени с периодически сканирующим лучом обзора пространства. Например, луч обзора пространства может охватывать 360 градусов периодически, тогда как сопровождающие лучи могут следить за индивидуальными целями независимо от того, куда в это время направлен луч обзора пространства.

Фазированные решётки, как и все физические объекты, имеют и ограничения. Основное ограничение — диапазон углов, на которые луч может быть отклонён. Практически, предел составляет 45...60 градусов от перпендикуляра к плоскости антенны. Отклонение луча на большие углы значительно ухудшает основные характеристики антенной системы (УБЛ, КНД, ширину и форму основного лепестка диаграммы направленности). Это объясняется двумя эффектами. Первый из них — уменьшение эффективной длины (ширины) антенны (апертура антенны) с ростом угла отклонения луча. В свою очередь, сокращение длины решётки в сочетании со снижением коэффициента усиления антенны уменьшает способность обнаружения цели на расстоянии.

Второй эффект вызван видом диаграммы направленности (ДН) выбранных элементов антенной решётки. Отклонять луч ФАР целесообразно в пределах основного лепестка ДН элементов антенной решётки (этот луч шире основного луча ДН ФАР). Выход за пределы или приближение к краям основного лепестка ДН элементов антенной решетки приводит, в первом случае, к участию боковых лепестков ДН в формировании ДН ФАР, во втором случае, к уменьшению мощности излучения. В результате, при предельных значениях углов луч существенно ослаблен и расфокусирован.

Устройство[править | править исходный текст]

Возбуждение излучателей ФАР производится либо при помощи фидерных линий, либо посредством свободно распространяющихся волн (в т. н. квазиоптических ФАР), фидерные тракты возбуждения наряду с фазовращателями иногда содержат сложные электрические устройства (т. н. диаграммообразующие схемы), обеспечивающие возбуждение всех излучателей от нескольких входов, что позволяет создать в пространстве соответствующие этим входам одновременно сканирующие лучи (в многолучевых ФАР). Квазиоптические ФАР в основном бывают двух типов: проходные (линзовые), в которых фазовращатели и основные излучатели возбуждаются (при помощи вспомогательных излучателей) волнами, распространяющимися от общего облучателя, и отражательные – основной и вспомогательные излучатели совмещены, а на выходах фазовращателей установлены отражатели. Многолучевые квазиоптические ФАР содержат несколько облучателей, каждому из которых соответствует свой луч в пространстве. Иногда в ФАР для формирования ДН применяют фокусирующие устройства (зеркала, линзы). Рассмотренные выше ФАР иногда называются пассивными.

Наибольшими возможностями управления характеристиками обладают активные ФАР, в которых к каждому излучателю или модулю подключен управляемый по фазе (иногда и по амплитуде) передатчик или приёмник. Управление фазой в активных ФАР может производиться в трактах промежуточной частоты либо в цепях возбуждения когерентных передатчиков, гетеродинов приёмников и т.п. Таким образом, в активных ФАР фазовращатели могут работать в диапазонах волн, отличных от частотного диапазона антенны; потери в фазовращателях в ряде случаев непосредственно не влияют на уровень основного сигнала. Передающие активные ФАР позволяют осуществить сложение в пространстве мощностей когерентных электромагнитных волн, генерируемых отдельными передатчиками. В приёмных активных ФАР совместная обработка сигналов, принятых отдельными элементами, позволяет получать более полную информацию об источниках излучения.

В результате непосредственного взаимодействия излучателей между собой характеристики ФАР (согласование излучателей с возбуждающими фидерами, КНД и др.) при качании луча изменяются. Для борьбы с вредными последствиями взаимного влияния излучателей в ФАР иногда применяют специальные методы компенсации взаимной связи между элементами.

Структура ФАР[править | править исходный текст]

Формы, размеры и конструкции современных ФАР весьма разнообразны; их разнообразие определяется как типом используемых излучателей, так и характером их расположения. Сектор сканирования ФАР определяется ДН её излучателей. В ФАР с быстрым широкоугольным качанием луча обычно используются слабонаправленные излучатели: симметричные и несимметричные вибраторы, часто с одним или несколькими рефлекторами (например, в виде общего для всей ФАР зеркала); открытые концы радиоволноводов, щелевые, рупорные, спиральные, диэлектрические стержневые, логопериодические и др. антенны. Иногда большие по размерам ФАР составляют из отдельных малых ФАР (модулей); ДН последних ориентируется в направлении основного луча всей ФАР. В ряде случаев, например когда допустимо медленное отклонение луча, в качестве излучателей используют остронаправленные антенны с механическим поворотом (например, т. н. полноповоротные зеркальные); в таких ФАР отклонение луча на большой угол выполняют посредством поворота всех антенн и фазирования излучаемых ими волн; фазирование этих антенн позволяет также осуществлять в пределах их ДН быстрое качание луча ФАР.

В зависимости от требуемой формы ДН и необходимого пространственного сектора сканирования в ФАР применяют различное взаимное расположение элементов:

  • вдоль линии (прямой или дуги);
  • по поверхности (например, плоской – в т. н. плоских ФАР; цилиндрической; сферической)
  • в заданном объёме (объёмные ФАР).

Иногда форма излучающей поверхности ФАР – раскрыва, определяется конфигурацией объекта, на котором устанавливается ФАР. ФАР с формой раскрыва, подобной форме объекта, иногда называются конформными. Широко распространены плоские ФАР; в них луч может сканировать от направления нормали к раскрыву (как в синфазной антенне) до направления вдоль раскрыва (как в антенне бегущей волны). Коэффициент направленного действия (КНД) плоской ФАР при отклонении луча от нормали к раскрыву уменьшается. Для обеспечения широкоугольного сканирования (в больших пространственных углах – вплоть до 4 стерадиан без заметного снижения КНД используют ФАР с неплоским (например, сферическим) раскрывом или системы плоских ФАР, ориентированных в различных направлениях. Сканирование в этих системах осуществляется посредством возбуждения соответственно ориентированных излучателей и их фазирования.

По характеру распределения излучателей в раскрыве различают эквидистантные и неэквидистантные ФАР. В эквидистантных ФАР расстояния между соседними элементами одинаковы по всему раскрыву. В плоских эквидистантных ФАР излучатели чаще всего располагают в узлах прямоугольной решётки (прямоугольное расположение) или в узлах треугольной сетки (гексагональное расположение). Расстояния между излучателями в эквидистантных ФАР обычно выбирают достаточно малыми (часто меньше рабочей длины волны), что позволяет формировать в секторе сканирования ДН с одним главным лепестком (без побочных дифракционных максимумов – т. н. паразитных лучей) и низким уровнем боковых лепестков; однако для формирования узкого луча (т. е. в ФАР с большим раскрывом) необходимо использовать большое число элементов. В неэквидистантных ФАР элементы располагают на неодинаковых расстояниях друг от друга (расстояние может быть, например, случайной величиной). В таких ФАР даже при больших расстояниях между соседними излучателями можно избежать образования паразитных лучей и получать ДН с одним главным лепестком. Это позволяет в случае больших раскрывов сформировать очень узкий луч при сравнительно небольшом числе элементов; однако такие неэквидистантные ФАР с большим раскрывом при малом числе излучателей имеют более высокий уровень боковых лепестков и, соответственно, более низкий КНД, чем ФАР с большим числом элементов. В неэквидистантных ФАР с малыми расстояниями между излучателями при равных мощностях волн, излучаемых отдельными элементами, можно получать (в результате неравномерного распределения плотности излучения в раскрыве антенны) ДН с более низким уровнем боковых лепестков, чем в эквидистантных ФАР с таким же раскрывом и таким же числом элементов.

Управление фазовыми сдвигами[править | править исходный текст]

По способу изменения фазовых сдвигов различают ФАР:

  • с электромеханическим сканированием, осуществляемым, например, посредством изменения геометрической формы возбуждающего радиоволновода;
  • частотным сканированием, основанным на использовании зависимости фазовых сдвигов от частоты, например за счёт длины фидера между соседними излучателями или дисперсии волн в радиоволноводе;
  • с электрическим сканированием, реализуемым при помощи фазосдвигающих цепей или фазовращателей, управляемых электрическими сигналами с плавным (непрерывным) или ступенчатым (дискретным) изменением фазовых сдвигов.

Наибольшими возможностями обладают ФАР с электрическим сканированием. Они обеспечивают создание разнообразных фазовых сдвигов по всему раскрыву и значительную скорость изменения этих сдвигов при сравнительно небольших потерях мощности. На СВЧ в современных ФАР широко используют ферритовые и полупроводниковые фазовращатели (с быстродействием порядка микросекунд и потерями мощности ~ 20%). Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных – каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР.

Помехозащищённость[править | править исходный текст]

Помехозащищённость системы зависит от уровня боковых лепестков антенны и возможности подстройки (адаптации) его по помеховой обстановке. Антенная решётка — необходимое звено для создания такого динамического пространственно-временного фильтра, или просто для уменьшения УБЛ. Одной из важнейших задач современной бортовой радиоэлектроники является создание комплексированной системы, совмещающей несколько функций, например радионавигации, РЛС, связи и т. д. Возникает необходимость создания антенной решётки с электрическим сканированием с несколькими лучами (многолучевой, моноимпульсной и т. д.), работающей на различных частотах (совмещённой) и имеющей различные характеристики.

Классификация[править | править исходный текст]

Классификация антенных решёток; а) линейная; б) дуговая; в) кольцевая; г) плоская; д) цилиндрическая; е) коническая; ж) сферическая; з) неэквидистантная

Антенные решётки могут быть классифицированы по следующим основным признакам:

  • Геометрия расположения излучателей в пространстве:
    • линейные
    • дуговые
    • кольцевые
    • плоские
      • с прямоугольной сеткой размещения
      • с косоугольной сеткой размещения
    • выпуклые
      • цилиндрические
      • конические
      • сферические
    • пространственные
  • Способ возбуждения:
    • с последовательным питанием
    • с параллельным питанием
    • с комбинированным (последовательно-параллельным)
    • с пространственным (оптическим, «эфирным») способом возбуждения
  • закономерность размещения излучающих элементов в самой решётке
    • эквидистантное размещение
    • неэквидистантное размещение
  • Способ обработки сигнала
  • Амплитудо-фазовое распределение токов (поля) по решётке
  • Тип излучателей

Обработка сигнала[править | править исходный текст]

В питающем антенную решётку тракте (фидере) возможна различная пространственно-временная обработка сигнала. Изменение фазового распределения в решётке с помощью системы фазовращателей в питающем тракте позволяет управлять максимумом диаграммы направленности. Такие решётки называют фазированными антенными решётками (ФАР). Если к каждому излучателю ФАР, или к группе подключается усилитель мощности, генератор сигналов, или преобразователь частоты, то такие решётки называются активными фазированными антенными решётками (АФАР).

Адаптивные АР[править | править исходный текст]

Приёмные антенные решётки с саморегулируемым амплитудно-фазовым распределением в зависимости от помеховой обстановки называют адаптивными. Приёмные антенные решётки с обработкой сигнала методами когерентной оптики называются радиооптическими. Приёмные антенные решётки, в которых обработка ведётся цифровыми процессорами, называются цифровыми антенными решётками.

Совмещённые антенные решётки[править | править исходный текст]

Совмещённые антенные решётки имеют в своём раскрыве два, или более типа излучателей, каждый из которых работает в своём частотном диапазоне.

Многолучевые антенные решётки[править | править исходный текст]

Антенные решётки, формирующие с одного излучающего раскрыва несколько независимых (ортогональных) лучей и имеющие соответствующее число входов, называются многолучевыми.

По виду амплитудного распределения[править | править исходный текст]

В зависимости от соотношения амплитуд токов возбуждения различают решётки с:

  • равномерным
  • экспоненциальным
  • симметрично спадающим относительно центра

амплитудным распределением. Если фазы токов излучателей изменяются вдоль линии их размещения по линейному закону, то такие решётки называют решётками с линейным фазовым распределением. Частным случаем таких решёток являются синфазные решётки, у которых фазы тока всех элементов одинаковы.

Перспективы развития[править | править исходный текст]

К наиболее важным направлениям дальнейшего развития теории и техники ФАР относятся:

  • Широкое внедрение в радиотехнические устройства ФАР с большим числом элементов, разработка элементов новых типов, в частности для активных ФАР;
  • Развитие методов построения ФАР с большими размерами раскрывов, в том числе неэквидистантных ФАР с остронаправленными антеннами, расположенными в пределах целого полушария Земли (глобальный радиотелескоп);
  • Дальнейшая разработка методов и технических средств ослабления вредных влияний взаимной связи между элементами ФАР;
  • Развитие теории синтеза и методов машинного проектирования ФАР;
  • Разработка теории и внедрение в практику новых методов обработки информации, принятой элементами ФАР, и использования этой информации для управления ФАР, в частности для автоматического фазирования элементов (самофазирующиеся ФАР) и изменения формы ДН, например понижения уровня боковых лепестков в направлениях на источники помех (адаптивные ФАР);
  • Разработка методов управления независимым движением отдельных лучей в многолучевых ФАР.

См. также[править | править исходный текст]

Ссылки[править | править исходный текст]

Литература[править | править исходный текст]

  • Воскресенский Д. И., Гостюхин В. Л., Максимов В. М., Пономарёв Л. И. Антенны и устройства СВЧ / Под ред. Д. И. Воскресенского. Учебник. — 2-е изд. — Москва: МАИ, 1993. — 528 с.
  • Сазонов Д. М., Гридин А. М., Мишустин Б. А. Устройства СВЧ — М: Высш. школа, 1981
  • Антенны и устройства СВЧ. Проектирование фазированных антенных решёток. Учебное пособие / Под ред. Д. И. Воскресенского. — Москва: Радио и связь, 1994. — 592 с.
  • Сазонов Д. М. Антенны и устройства СВЧ. Учебник. — Москва: Высшая школа, 1988. — 432 с.
  • Вендик О. Г. Антенны с немеханическим движением луча, М., 1965
  • Сканирующие антенные системы СВЧ, пер. с англ., т. 1–3, М., 1966–71

Примечания[править | править исходный текст]