Тёрстон, Уильям Пол

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Уильям Пол Тёрстон
William Thurston.jpg
Дата рождения 30 октября 1946(1946-10-30)[1][2]
Место рождения
Дата смерти 21 августа 2012(2012-08-21)[3][1][2] (65 лет)
Место смерти
Страна
Научная сфера топология
Место работы
Альма-матер
Научный руководитель Morris Hirsch[d][4]
Награды и премии
Commons-logo.svg Уильям Пол Тёрстон на Викискладе

Уильям Пол Тёрстон (англ. William Paul Thurston; 30 октября 1946, Вашингтон — 21 августа 2012, Рочестер) — американский математик, один из пионеров маломерной топологии[en], лауреат премии Филдса (1982).

Биография[править | править код]

Родился в семье инженера-физика Лабораторий Белла и швеи. В 1967 году окончил Нью-колледж во Флориде[en], в дипломной работе представил интуиционистские основания топологии. По окончании колледжа поступил в Университет Калифорнии в Беркли; будучи студентом участвовал в демонстрациях против Вьетнамской войны. В 1972 году под руководством Морриса Хирша[en] защитил докторскую диссертацию на тему «Слоения 3-многообразий, являющиеся расслоениями на окружности».

После защиты провёл год в Институте высших исследований в Принстоне, после чего приглашён в Массачусетский технологический институт на должность доцента. В 1974 году получил должность профессора в Принстонском университете, где во второй половине 1970-х — начале 1980-х годов получил основные результаты в маломерной топологии.

В 1982 году стал лауреатом Филдсовской премии, в номинации отмечался революционный вклад в двумерную и трёхмерную топологию, показавший новые взаимосвязи между анализом, топологией и геометрией, а также демонстрацию того, что большой класс 3-многообразий обладает гиперболической структурой.

В 1992 году вернулся в Беркли, заняв должность директора местного Институт математических исследований[en]. В период 1996—2003 годов был профессором в Калифорнийском университете в Дейвисе. С 2003 года — профессор математики и информатики в Корнеллском университете.

В 2011 году перенёс операцию по удалению меланомы, лишившись правого глаза, однако продолжал работу, активно участвовал в конференциях. Скончался в 2012 году в результате последствий ракового заболевания.

Первая жена — сокурсница по Нью-колледжу Рейчел Финдли, в браке с ней воспитали трох детей. В середине 1990-х годов женился на Джулиан Тёрстон, в браке с ней родилось двое детей.

Вклад в математику[править | править код]

Ранние труды начала 1970-х годов в основном посвящены теории слоений, наиболее значительные результаты:

В трудах конца 1970-х годов выявил, что гиперболическая геометрия играет гораздо более важную роль в общей теории 3-многообразий, чем считалось ранее. До Тёрстона было только лишь несколько известных примеров гиперболических 3-многообразий конечного объёма, например, пространство Зейферта — Вебера[en]. Но уже к середине 1970-х годов в работах Роберта Райли и Троэльса Йоргенсена выявлено, что эти примеры были не столь атипичными, в частности, доказано, что дополнение узла «восьмерка» гиперболично (это был первый пример гиперболического узла[en]). Основываясь на результатах Райли и Йоргенсена, Тёрстон изучил структуру дополнения «восьмёрки», и получил ряд результатов, показывающих обширность и значимость классов гиперболических 3-многообразий, в частности, доказал теорему о гиперболической хирургии Дена[en], обеспечивающую возможность конструировать на основе некоторого класса известных 3-многообразий новые гиперболические 3-многообразия. Развивая полученные результаты, доказал теорему гиперболизации[en], утверждающую гиперболичность замкнутых аторических многообразий Хакена.

Гипотеза Тёрстона — выдвинутое учёным в 1982 году предположение о возможности обобщить теорему гиперболизации на обширный класс 3-многообразий: согласно ней, замкнутое ориентируемое трёхмерное многообразие, в котором любая вложенная сфера ограничивает шар, разрезается несжимающимися торами на куски, на которых можно задать одну из стандартных геометрий. Фактически, утверждение является аналогом теоремы униформизации[en] для поверхностей на трёхмерные многообразия. Из этого утверждения следует много важных результатов, в частности, гипотеза Пуанкаре и более частная гипотеза эллиптизации Тёрстона[en].

В 2003 году Перельману удалось доказать гипотезу Тёрстона, проведя тем самым полную классификацию компактных трёхмерных многообразий, и, в частности, доказать гипотезу Пуанкаре. Тёрстон отмечал, что предложенное Перельманом решение полностью соответствует его видению (несмотря на то, что техника Перельмана существенно отличалась от инструментария, применяемого Тёрстоном).

Работы на русском языке[править | править код]

  • Тёрстон У. Трёхмерная геометрия и топология. — М.: МЦНМО, 2001. — 312 с. — ISBN 5-94057-013-5.
  • Тёрстон У., Уикс Д. Математика трёхмерных многообразий // В мире науки. — 1984. — № 9. — С. 74—88.

Примечания[править | править код]

Литература[править | править код]