Сельберг, Атле

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Атле Сельберг
норв. Atle Selberg
Atle Selberg.jpg
Дата рождения:

14 июня 1917(1917-06-14)

Место рождения:

Лангесунн, Телемарк, Норвегия

Дата смерти:

6 августа 2007(2007-08-06) (90 лет)

Место смерти:

Принстон, Мёрсер, Нью-Джерси, США[1]

Страна:

Норвегия

Научная сфера:

математика

Альма-матер:

Университет Осло

Награды и премии:
Командор со звездой ордена Святого Олафа

Филдсовская премия (1950)
Премия Вольфа (1986)

Commons-logo.svg Атле Сельберг на Викискладе

Атле Сельберг (норв. Atle Selberg, 14 июня 1917 — 6 августа 2007) — норвежский математик, известный своими работами в области аналитической теории чисел и теории автоморфных функций.

Биография[править | править вики-текст]

Сельберг родился в 1917 году в норвежском городе Лангесун (Langesund). Получил образование в Университете Осло, который окончил в 1943 году, получив степень Ph.D.

В 1942 году он доказал, что конечная доля всех нулей дзета-функции Римана лежит на критической прямой Re(s)=12. В 1947 году разработал «метод решета Сельберга», применявшийся в исследовании вопросов аналитической теории чисел. В 1948 году (параллельно с Эрдёшем) получил элементарное доказательство асимптотического закона распределения простых чисел, опубликовал его и в 1950 году был удостоен за это Филдсовской премии.

Нашёл одно из элементарных доказательств теоремы Дирихле о простых числах в арифметической прогрессии.[2]

Переехав в США, начал работу в Институте перспективных исследований в Принстоне (штат Нью-Джерси). В 1956 году он опубликовал одну из наиболее значимых своих работ, в которой доказывал формулу, получившую название «Формула следа Сельберга» (применяется в теории автоморфных функций, в теории представлений и других разделах математики и физики[3]).

В 1986 году за его работы по теории чисел, дискретным группам и автоморфным формам Сельберг был удостоен Премии Вольфа. Также он был избран членом Норвежской академии наук, Датской королевской академии наук и Американской академии гуманитарных и точных наук.

Сельберг был женат, имел двух детей. Скончался 6 августа 2007 года от сердечной недостаточности[4].

Гипотеза А. Сельберга[править | править вики-текст]

В 1942 году Атле Сельберг выдвинул[5] гипотезу, что при фиксированном с условием , достаточно большом и , , промежуток содержит не менее вещественных нулей дзета-функции Римана . Сельберг доказал справедливость утверждения для случая .

В 1984 году А. А. Карацуба доказал гипотезу Сельберга[6][7][8].

Оценки А. Сельберга и А. А. Карацубы являются неулучшаемыми по порядку роста при .

В 1992 г. А. А. Карацуба доказал[9], что аналог гипотезы Сельберга справедлив для «почти всех» промежутков , , где — сколь угодно малое фиксированное положительное число. Метод, разработанный Карацубой позволяет исследовать нули дзета-функции Римана на «сверхкоротких» промежутках критической прямой, то есть на промежутках , длина которых растёт медленнее любой, даже сколь угодно малой, степени . В частности, он доказал, что для любых заданных чисел , с условием почти все промежутки при содержат не менее нулей функции . Эта оценка весьма близка к той, что следует из гипотезы Римана.

Примечания[править | править вики-текст]

  1. Record #117725161 // Общий нормативный контроль — 2012—2016.
  2. Selberd A. Annals of Math. — 1949.
  3. Венков А.Б., Никитин А.М. Формулы следа Сельберга, графы Рамануджана и некоторые проблемы математической физики.
  4. Atle Selberg, 90, Lauded Mathematician, Dies (англ.), The New York Times (17.08.2007).
  5. Selberg, A. (1942). «On the zeros of Riemann's zeta-function». Shr. Norske Vid. Akad. Oslo (10): 1–59.
  6. Карацуба, А. А. (1984). «О нулях функции ζ(s) на коротких промежутках критической прямой». Изв. РАН. Сер. матем. (48:3): 569–584.
  7. Карацуба, А. А. (1984). «Распределение нулей функции ζ(1/2 + it)». Изв. РАН. Сер. матем. (48:6): 1214–1224.
  8. Карацуба, А. А. (1985). «О нулях дзета-функции Римана на критической прямой». Труды МИАН (167): 167–178.
  9. Карацуба, А. А. (1992). «О количестве нулей дзета-функции Римана, лежащих на почти всех коротких промежутках критической прямой». Изв. РАН. Сер. матем. (56:2): 372–397.

Ссылки[править | править вики-текст]