Эффект Ааронова — Бома
Эффе́кт Ааро́нова — Бо́ма (иначе эффект Эренберга — Сидая — Ааронова — Бома) — квантовое явление, при котором на частицу с электрическим зарядом или магнитным моментом, электромагнитное поле влияет даже в тех областях, где напряжённость электрического поля и индукция магнитного поля равны нулю[1], но не равны нулю скалярный и/или векторный потенциалы электромагнитного поля (то есть если не равен нулю электромагнитный потенциал).
Самая ранняя форма этого эффекта была предсказана Эренбергом и Сидаем в 1949 году[2], подобный эффект был позже предсказан вновь Аароновым и Бомом в 1959 году[3].
Эксперимент
[править | править код]Эффект наблюдается для магнитного поля и электрического поля, но влияние магнитного поля зафиксировать легче, поэтому впервые эффект был зарегистрирован именно для него в 1960 году[4]. Эти экспериментальные данные, однако, подвергались критике, поскольку в проводимых измерениях не удавалось в полной мере создать условия, при которых напряжённость магнитного поля была бы строго равна нулю на всей траектории движения электрона.
Все сомнения в существовании эффекта в экспериментах были сняты после проведения в 1986 году опытов с использованием сверхпроводящих материалов, полностью экранирующих магнитное поле (в смысле экранирования его вектора индукции)[5].
Этот раздел не завершён. |
Интерпретации и трактовки
[править | править код]Сущность эффектов Ааронова — Бома можно переформулировать следующим образом: Обычной для классической электродинамики[6] концепции локального воздействия напряжённости[7] электромагнитного поля на частицу недостаточно, чтобы предсказать квантовомеханическое поведение частицы. В терминах напряжённостей полей, для описания заряженной квантовой частицы оказалось необходимым знать напряжённость электромагнитного поля во всём пространстве.[8]. Если E или B не равны нулю хотя бы в какой-то области пространства, вероятность попадания в которую для заряженной частицы равна нулю, то такое поле, тем не менее, может заметно влиять на квантовое поведение заряженной частицы (а именно - на фазу волновой функции частицы). При этом изменяется дифракционная картина, в том числе положение дифракционного максимума и т. п.
Однако через электромагнитный потенциал теория эффекта строится естественно и локально.[источник не указан 3156 дней]
Эффект Ааронова — Бома можно интерпретировать как доказательство того, что потенциалы электромагнитного поля являются не просто математической абстракцией, полезной для вычисления напряжённостей, а в принципе независимо наблюдаемыми[9] величинами, имеющими таким образом несомненный и прямой физический смысл.
Противопоставление потенциалов и силовых характеристик поля
[править | править код]Стиль этого раздела неэнциклопедичен или нарушает нормы литературного русского языка. |
Классическая физика основана на понятии силы, и напряжённость электрического поля E, так же как и вектор магнитной индукции B — по сути «силовые характеристики» электромагнитного поля: их можно использовать для наиболее прямого и непосредственного вычисления силы, действующей на заряженную частицу (в сущности, скажем, E — и есть просто сила, действующая на единичный неподвижный заряд).
В рамках специальной теории относительности эта концепция не претерпела радикальных изменений. Сила из уравнения Ньютона не является 4-вектором, отчего в данной теории расчёты и формулировки с использованием понятия силы несколько теряют первоначальную ньютоновскую простоту и красоту (а поэтому закрадываются некоторые сомнения в их фундаментальности). (E и B также не являются 4-векторами, однако это не приводит к полной замене представлений об электромагнитном поле, так как для них находится достаточно прямое и красивое 4-мерное обобщение — тензор электромагнитного поля (компоненты E и B оказываются его компонентами), во многом позволяющий записать уравнения электродинамики даже более компактно и красиво, чем E и B по отдельности, при этом оставаясь по смыслу всё той же напряжённостью поля).
В квантовой механике частица представлена как волна (а значит, вообще говоря, не локализована в точке пространства или даже в малой окрестности точки), поэтому принципиально оказывается довольно трудно описать её взаимодействие с чем-либо (например, с электромагнитным полем) в терминах силы (ведь классическое понятие силы или силового поля подразумевает, что воздействие на частицу — которая в классике точечна — происходит тоже в одной точке пространства; а естественно обобщить этот подход на квантовый случай делокализованной частицы оказывается не просто). Поэтому в квантовой механике предпочитают иметь дело с потенциальной энергией и потенциалами.
При формулировке электродинамики, теория в принципе может выбрать за основные величины напряжённости E и B, или потенциалы φ и A. Вместе φ и A образуют 4-вектор (φ — нулевая компонента, A — три остальные компоненты) — электромагнитный потенциал (4-потенциал). Однако он не является однозначно определённым, поскольку к этому 4-вектору всегда можно добавить некоторую 4-векторную добавку (так называемое калибровочное преобразование), и при этом поля E и B не изменяются (это одно из проявлений калибровочной инвариантности). Долгое время физики задавались вопросом, фундаментально ли поле электромагнитного потенциала, даже если оно не может быть определено единственным образом, или его появление в теории — это только удобный формальный математический трюк.
Согласно эффекту Ааронова — Бома, меняя электромагнитный потенциал, можно менять непосредственно измеримые величины — пропуская электрон через области пространства, где поля E и B вообще отсутствуют (имеют нулевые значения), но электромагнитный потенциал отличен от нуля: изменения электромагнитного потенциала меняют непосредственно наблюдаемую картину, хотя E и B не меняются в тех областях пространства, которые доступны частице, и в которых таким образом им можно было бы приписать локальное физическое воздействие на неё. Таким образом, эффект Ааронова — Бома мог быть аргументом в пользу более фундаментального характера потенциалов по сравнению с напряжённостями полей. Однако Вайдман показал, что эффект Ааронова — Бома можно объяснить без использования потенциалов, если дать полную квантово-механическую обработку зарядам источника, которые создают электромагнитное поле. Согласно этой точке зрения, потенциал в квантовой механике столь же физический (или нефизический), как это было классически.
Гравитационный эффект
[править | править код]Общая теория относительности предсказывает существование фазового сдвига Ааронова–Бома, вызываемого гравитационным потенциалом. [10] В 2012 г. была выдвинута идея экспериментального наблюдения гравитационного эффекта Ааронова–Бома[11][12] и в 2022 году на её основе был проведён эксперимент.[13][14][15]
В эксперименте ультрахолодные атомы рубидия запускались вертикально внутрь десятиметровой вакуумной трубы, наверху которой находилась осесимметричная масса, которая изменяла гравитационный потенциал, и затем атомный волновой пакет расщеплялся на две части при помощи лазерного излучения так, чтобы одна часть поднималась выше другой, а затем обе части интерферировали, позволяя экспериментально наблюдать сдвиг фазы. Было обнаружено статистически значимое соответствие между измерениями и предсказаниями теории.[16][17][18][19]
См. также
[править | править код]Примечания
[править | править код]- ↑ Это существенно и кажется почти парадоксальным, поскольку в классической физике взаимодействие зарядов с электромагнитным полем происходит в конечном итоге только через посредство напряжённостей и , что сделало привычным отождествление этих величин (как по смыслу, так даже и терминологически) с самим электромагнитным полем, в то время как потенциалы электромагнитного поля долгое время рассматривались (или могли рассматриваться, поскольку в классической физике были экспериментально ненаблюдаемы) лишь как чисто формальные вспомогательные величины.
- ↑ Ehrenberg, W. and R. E. Siday, «The Refractive Index in Electron Optics and the Principles of Dynamics», Proc. Phys. Soc. (London) B62, 8—21 (1949)
- ↑ Aharonov, Y. and D. Bohm, «Significance of electromagnetic potentials in quantum theory», Phys. Rev. 115, 485—491 (1959).
- ↑ R. G. Chambers, "Shift of an Electron Interference Pattern by Enclosed Magnetic Flux, " Phys. Rev. Lett. 5, 3 (1960); G. Möllenstedt and W. Bayh, Physikalische Blätter 18, 299 (1961)
- ↑ Osakabe, N., T. Matsuda, T. Kawasaki, J. Endo, A. Tonomura, S. Yano, and H. Yamada et al. Experimental confirmation of Aharonov–Bohm effect using a toroidal magnetic field confined by a superconductor (англ.) // Physical Review A : journal. — 1986. — Vol. 34, no. 2. — P. 815—822. — doi:10.1103/PhysRevA.34.815. — . — PMID 9897338.
- ↑ Неожиданность и парадоксальность эффекта во многом есть следствие сформировавшейся в классической электродинамике терминологии, в которой понятия электромагнитного поля и его напряжённости слились (что видно уже из отсутствия слова напряжённость в термине тензор электромагнитного поля), то есть следствие отразившейся и в терминологии устойчивой привычки, в частности, считать, что «поля нет», если напряжённости E и B равны нулю, хотя бы и не были равны нулю потенциалы и . Такая привычка оказалась несовместимой с рассмотрением взаимодействия электромагнитного поля с заряженными частицами как локального.
- ↑ Под напряжённостью здесь понимается тензор электромагнитного поля, включающий в себя (в качестве компонент) компоненты вектора напряжённости электрического поля и вектора магнитной индукции и являющийся, таким образом, математическим объектом, полностью характеризующим напряжённость (напряжённости) электромагнитного поля.
- ↑ Если знать напряжённость поля во всем пространстве, то в типичной ситуации эксперимента контурный интеграл электромагнитного потенциала, дающий сдвиг фазы по сравнению с ситуацией полного отсутствия поля, равен по теореме Стокса поверхностному интегралу от (тензора) напряжённости поля по поверхности, пересекающей и ту область, где эта напряжённость ненулевая (именно там поверхностный интеграл получает ненулевой вклад). В этом смысле оказывается, что формулировка через напряжённости, а не потенциалы, не является локальной: ненулевая напряжённость электромагнитного поля в одном месте пространства действует на движение электрона в других, удалённых от этого места, областях (хотя и охватывающих область с ненулевой напряжённостью, но не пересекающиеся с ней и даже не примыкающие к ней вплотную).
- ↑ Непосредственно наблюдаемым, строго говоря, оказывается не сам электромагнитный потенциал, а его интегралы по замкнутым контурам, но тем не менее они то измеряются непосредственно и независимо от E и B, взаимодействуя с частицей там, где E и B равны нулю.
- ↑ Алексей Понятов Десять значимых событий 2022 года в астрономии и физике 7. Гравитационный эффект Ааронова—Бома Архивная копия от 12 февраля 2023 на Wayback Machine // Наука и жизнь, 2023, № 2. — с. 34
- ↑ Hohensee, Michael A.; Estey, Brian; Hamilton, Paul; Zeilinger, Anton; Müller, Holger (2012-06-07). "Force-Free Gravitational Redshift: Proposed Gravitational Aharonov-Bohm Experiment". Physical Review Letters (англ.). 108 (23): 230404. arXiv:1109.4887. Bibcode:2012PhRvL.108w0404H. doi:10.1103/PhysRevLett.108.230404. ISSN 0031-9007. PMID 23003927. S2CID 22378148.
- ↑ Ehrenstein, David (2012-06-07). "The Gravitational Aharonov-Bohm Effect". Physics (англ.). 5. Архивировано 12 февраля 2023. Дата обращения: 12 февраля 2023.
- ↑ Overstreet, Chris; Asenbaum, Peter; Curti, Joseph; Kim, Minjeong; Kasevich, Mark A. (2022-01-14), "Observation of a gravitational Aharonov-Bohm effect", Science (англ.), 375 (6577): 226—229, Bibcode:2022Sci...375..226O, doi:10.1126/science.abl7152, ISSN 0036-8075, PMID 35025635, S2CID 245932980, Архивировано 12 февраля 2023, Дата обращения: 12 февраля 2023
{{citation}}
: Игнорируется текст: "journal" (справка) - ↑ Has a new experiment just proven the quantum nature of gravity? (амер. англ.). Big Think. Дата обращения: 21 января 2022. Архивировано 21 января 2022 года.
- ↑ "Quantum particles can feel the influence of gravitational fields they never touch". Science News (англ.). 2022-01-13. Архивировано 21 января 2022. Дата обращения: 21 января 2022.
- ↑ Dowker, J. S. (26 April 1967). "A gravitational Aharonov-Bohm effect". Il Nuovo Cimento B. Series 10 (англ.). 52 (1): 129—135. Bibcode:1967NCimB..52..129D. doi:10.1007/BF02710657. ISSN 0369-3554. S2CID 118872135.
- ↑ Ford, L H; Vilenkin, A (1981-09-01). "A gravitational analogue of the Aharonov-Bohm effect". Journal of Physics A: Mathematical and General (англ.). 14 (9): 2353—2357. Bibcode:1981JPhA...14.2353F. doi:10.1088/0305-4470/14/9/030. ISSN 0305-4470. Архивировано 12 февраля 2023. Дата обращения: 12 февраля 2023.
- ↑ B Ho, Vu; J Morgan, Michael (1994). "An Experiment to Test the Gravitational Aharonov-Bohm Effect". Australian Journal of Physics (англ.). 47 (3): 245. Bibcode:1994AuJPh..47..245H. doi:10.1071/PH940245. ISSN 0004-9506.
- ↑ Overstreet, Chris; Asenbaum, Peter; Kasevich, Mark A. (11 August 2021), "Physically significant phase shifts in matter-wave interferometry", American Journal of Physics (англ.), 89 (3): 324—332, arXiv:2008.05609, Bibcode:2021AmJPh..89..324O, doi:10.1119/10.0002638, ISSN 0002-9505, S2CID 221113180, Архивировано 12 февраля 2023, Дата обращения: 12 февраля 2023
{{citation}}
: Игнорируется текст: "journal" (справка)
Литература
[править | править код]- Научные работы
- Афанасьев, Г. Н. Старые и новые проблемы в теории эффекта Ааронова — Бома // Физика элементарных частиц и атомного ядра. — 1990. — Т. 21. — С. 172—250.
- Bachtold, A., C. Strunk, J. P. Salvetat, J. M. Bonard, L. Forro, T. Nussbaumer and C. Schonenberger, «Aharonov-Bohm oscillations in carbon nanotubes», Nature 397, 673 (1999).
- Imry, Y. and R. A. Webb, «Quantum Interference and the Aharonov-Bohm Effect», Scientific American, 260(4), April 1989.
- Kong, J., L. Kouwenhoven, and C. Dekker, «Quantum change for nanotubes», Physics Web (July 2004).
- London, F. «On the problem of the molecular theory of superconductivity», Phys. Rev. 74, 562—573 (1948).
- Murray, M. Line Bundles (недоступная ссылка), (2002).
- Olariu, S. and I. Iovitzu Popèscu, «The quantum effects of electromagnetic fluxes», Rev. Mod. Phys. 57, 339—436 (1985).
- Peat, F. David, Infinite Potential: The Life and Times of David Bohm (Addison-Wesley: Reading, MA, 1997). ISBN 0-201-40635-7.
- Peshkin, M. Архивная копия от 13 марта 2007 на Wayback Machine and Tonomura, A., The Aharonov-Bohm effect (Springer-Verlag: Berlin, 1989). ISBN 3-540-51567-4.
- Schwarzschild, B. «Currents in Normal-Metal Rings Exhibit Aharonov-Bohm Effect». Phys. Today 39, 17—20, Jan. 1986.
- Sjöqvist, E. «Locality and topology in the molecular Aharonov-Bohm effect», Phys. Rev. Lett. 89 (21), 210401/1—3 (2002).
- van Oudenaarden, A., M. H. Devoret, Yu. V. Nazarov, and J. E. Mooij, «Magneto-electric Aharonov-Bohm effect in metal rings», Nature 391, 768—770 (1998).
- Webb R., Washburn S., Umbach C., Laibowitz R. Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings // Phys. Rev. Lett.. — 1985. — Т. 54. — С. 2696—2699. — doi:10.1103/PhysRevLett.54.2696.
- Научно-популярные работы
- David Lindley. Landmarks: Ghostly Influence of Distant Magnetic Field (англ.) // Phys. Rev. Focus. — 2011. — Vol. 28.
- Herman Batelaan and Akira Tonomura. The Aharonov–Bohm effects: Variations on a subtle theme (англ.) // Physics Today. — 2009. — Vol. 62. — doi:10.1063/1.3226854. (недоступная ссылка)
- B. J. Hiley. The Early History of the Aharonov-Bohm Effect (англ.). — 2013. — arXiv:1304.4736.
Ссылки
[править | править код]- Ааронова — Бома эффект // Научная сеть Nature.web.ru