sinc

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Графики нормированной и ненормированной функций sinc(x) в диапазоне −7πx ≤ 7π.

sinc (от лат. sinus cardinalis — «кардина́льный си́нус») — математическая функция. Обозначается sinc(x). Имеет два определения — соответственно, для нормированной и ненормированной функции sinc:

  1. В цифровой обработке сигналов и теории связи нормированная функция sinc обычно определяется как
  2. В математике ненормированная функция sinc определяется как

В обоих случаях значение функции в особой точке x = 0 явным образом задаётся равным единице (см. Замечательные пределы). Таким образом, функция sinc аналитична для любого значения аргумента.

Свойства[править | править вики-текст]

Нормированная функция sinc обладает следующими свойствами:

  • и для всех и (целые числа); то есть это интерполянт.
  • Локальные максимум и минимум ненормированной функции sinc совпадают со значениями косинуса, то есть там, где производная равна нулю (локальный экстремум в точке ), выполняется условие .
  • Ненормированная функция sinc обращается в ноль при значениях аргумента, кратных π, а нормированная функция sinc — при целых значениях аргумента.
  • Непрерывное преобразование Фурье нормированной функции sinc (для единичного интервала частот) равно прямоугольной функции .
,
где прямоугольная функция — функция, принимающая значение 1 для любого аргумента из интервала между −½ и ½, и равная нулю при любом другом значении аргумента.
  • Разложение по степеням х:
где  — гамма-функция.

Использование и приложения[править | править вики-текст]

Обработка сигналов[править | править вики-текст]

sinc-фильтр — идеальный электронный фильтр, который подавляет все частоты в спектре сигнала выше некоторой частоты среза, оставляя все частоты ниже этой частоты неизменными. В частотной области (АЧХ) представляет собой прямоугольную функцию, а во временно́й области (импульсная характеристика) — sinc-функцию.

См. также[править | править вики-текст]