Ориентация: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Addbot (обсуждение | вклад)
м Интервики (всего 12) перенесены на Викиданные, d:q1477782
Строка 98: Строка 98:
[[Категория:Топология]]
[[Категория:Топология]]
[[Категория:Линейная алгебра]]
[[Категория:Линейная алгебра]]

[[cs:Orientace (matematika)]]
[[de:Orientierung (Mathematik)]]
[[en:Orientation (vector space)]]
[[eo:Orientiĝo (matematiko)]]
[[fr:Orientation (mathématiques)]]
[[he:אוריינטציה (אלגברה לינארית)]]
[[it:Orientazione]]
[[ja:向き]]
[[nl:Oriëntatie (chiraliteit)]]
[[pl:Orientacja (matematyka)]]
[[uk:Орієнтація]]
[[zh:定向 (数学)]]

Версия от 03:28, 13 марта 2013

Ориентация, в классическом случае — выбор одного класса систем координат, связанных между собой «положительно» в некотором определённом смысле. Каждая система задает ориентацию, определяя класс, к которому она принадлежит.

В элементарной математике ориентация часто описывается через понятие «направления по и против часовой стрелки».

Ориентация определяется только для некоторых специальных классов пространств (многообразий, векторных расслоений, комплексов Пуанкаре и т. д.). Современный взгляд на ориентацию даётся в рамках обобщённых теорий когомологий.

Конечномерное векторное пространство

В случае векторного пространства конечной размерности над полем вещественных чисел две системы координат считаются связанными положительно, если положителен определитель матрицы перехода от одной из них к другой.

Замечания

Для общего поля определение ориентации представляет трудности. Например, в комплексном пространстве комплексный репер определяет вещественный репер в том же пространстве, рассматриваемом как , и все такие реперы связаны попарно положительными переходами (иначе говоря, комплексная структура задаёт ориентацию в ).

Вариации и обобщения

Аффинное пространство

На прямой, плоскости и вообще в вещественном аффинном пространстве системы координат состоят из точки (начала ) и репера , переход определяется вектором переноса начала и заменой репера. Этот переход положителен, если положителен определитель матрицы замены (например, при чётной перестановке векторов репера).

Две системы координат определяют одну и ту же ориентацию, если одну из них можно перевести в другую непрерывно, то есть существует непрерывно зависящее от параметра семейство координатных систем , , связывающее данные системы , и , .

При отражении в гиперплоскости системы двух классов переходят друг в друга.

Ориентация может быть задана порядком вершин -мерного симплекса (треугольника в двумерном случае, тетраэдра в трёхмерном), Репер определяется условием: в первую вершину помещается начало, в остальные из первой направляются векторы репера. Два порядка задают одну ориентацию, если и только если они отличаются на чётную перестановку. Симплекс с фиксированным с точностью до чётной перестановки порядком вершин называется ориентированным. Каждая -грань ориентированного симплекса получает индуцированную ориентацию: если первая вершина не принадлежит грани, то порядок остальных принимается для неё за положительный.

Многообразия

В связном многообразии системой координат служит атлас — набор карт, покрывающих . Атлас называется ориентирующим, если координатные преобразования все положительны. Это означает, что их степени равны , а в случае дифференцируемого многообразия положительны якобианы преобразования во всех точках. Если ориентирующий атлас существует, то многообразие называется ориентируемым. В этом случае все ориентирующие атласы распадаются на два класса, так что переход от карт одного атласа к картам другого положителен, если и только если атласы принадлежат одному классу. Выбор такого класса называется ориентацией многообразия. Этот выбор может быть сделан указанием одной карты или локальной ориентации в точке. В случае дифференцируемого многообразия локальную ориентацию можно задать указанием репера в касательной плоскости в точке. Если имеет край и ориентировано, то край также ориентируем, например по правилу: в точке края берётся репер, ориентирующий , первый вектор которого направлен из , а остальные векторы лежат в касательной плоскости края, эти последние и принимаются за ориентирующий репер края.

Дезориентирующий контур

Дезориентирующий контур — замкнутая кривая в многообразии, обладающая тем свойством, что при её обходе локальная ориентация меняет знак.

Дезориентирующий контур имеется только в неориентируемом многообразии , причём однозначно определён гомоморфизм фундаментальной группы на с ядром, состоящим из классов петель, не являющихся дезориентирующими.

Вдоль любого пути можно выбрать цепочку карт так, что две соседние карты связаны положительно. Тем самым ориентация в точке определяет ориентацию в точке , и эта связь зависит от пути лишь с точностью до его непрерывной деформации при фиксированных концах. Если  — петля, то есть , то называется дезориентирующим контуром, если эти ориентации противоположны. Возникает гомоморфизм фундаментальной группы в группу порядка : дезориентирующие петли переходят в , а остальные в . По этому гомоморфизму строится накрытие, являющееся двулистным в случае неориентируемого многообразия. Оно называется ориентирующим (так как накрывающее пространство будет ориентируемым). Этот же гомоморфизм определяет над одномерное расслоение, тривиальное, если и только если ориентируемо. Для дифференцируемого оно может быть определено как расслоение дифференциальных форм порядка . Ненулевое сечение в нём существует лишь в ориентируемом случае и задаёт форму объёма на и одновременно ориентацию.

На языке гомологий

Ориентация может быть определена на гомологическом языке: для связного ориентируемого многообразия без края группа гомологий (с замкнутыми носителями) изоморфна , и выбор одной из двух образующих задаёт ориентацию — отбираются карты с положительными степенями отображений. Для связного многообразия с краем то же верно и для . В первом случае ориентируемость есть гомотопический инвариант M, а во втором — пары . Так, лист Мёбиуса и кольцо имеют один и тот же абсолютный гомотопический тип, но разный — относительно края.

Локальная ориентация многообразия может быть также задана выбором образующей в группе , изоморфной Гомологическая интерпретация ориентации позволяет перенести это понятие на обобщённые гомологические многообразия.

Псевдомногообразия

Триангулированное многообразие (или псевдомногообразие) ориентируемо, если можно ориентировать все -мерные симплексы так, что два симплекса с общей -мерной гранью индуцируют на ней противоположные ориентации. Замкнутая цепочка -мерных симплексов, каждые два соседа в которой имеют общую -грань, называется дезориентирующей, если эти симплексы могут быть ориентированы так, что первый и последний симплексы индуцируют на общей грани совпадающие ориентации, а остальные соседи — противоположные.

Расслоения

Пусть над пространством задано расслоение со стандартным слоем . Если ориентацию всех слоев можно выбрать так, что любое (собственное) отображение, определённое путем в однозначно с точностью до собственной гомотопии, сохраняет ориентацию, то расслоение называется ориентированным, а указанный выбор ориентации слоёв — ориентацией расслоения. Например, лист Мёбиуса, рассматриваемый как векторное расслоение над окружностью, не обладает ориентацией, в то время как боковая поверхность цилиндра — обладает.

Бесконечномерные пространства

Понятие ориентации допускает естественное обобщение и для случая бесконечномерного многообразия, моделированного при помощи бесконечномерного банахова или топологического векторного пространства. При этом необходимы ограничения на линейные операторы, являющиеся дифференциалами функций перехода от карты к карте: они должны не просто принадлежать общей линейной группе всех изоморфизмов моделирующего пространства, которая гомотопически тривиальна (в равномерной топологии) для большинства классических векторных пространств, а содержаться в некоторой линейно несвязной подгруппе общей линейной группы. Тогда компонента связности данной подгруппы и будет задавать «знак» ориентации. В качестве такой подгруппы обычно выбирается фредгольмова группа, состоящая из тех изоморфизмов моделирующего пространства, для которых разность с тождественным изоморфизмом есть вполне непрерывный оператор.

См. также