Тетраэдр

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Тетраэдр

Тетра́эдр (др.-греч. τετρά-εδρον — четырёхгранник[1], от др.-греч. τέσσᾰρες, τέσσερες, τέττᾰρες, τέττορες, τέτορες — «четыре» + др.-греч. ἕδρα — «седалище, основание») — простейший многогранник, гранями которого являются четыре треугольника[2], треугольная пирамида. У тетраэдра 4 грани, 4 вершины и 6 рёбер. Тетраэдр, у которого все грани — равносторонние треугольники, называется правильным. Правильный тетраэдр является одним из пяти правильных многогранников.

Содержание

Свойства тетраэдра[править | править код]

Описанный параллелепипед[править | править код]

Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед.

Деление тетраэдра на две равные части[править | править код]

Плоскость, проходящая через середины двух скрещивающихся рёбер тетраэдра, делит его на две равные по объёму части[3]:216-217.

Бимедианы[править | править код]

Бимедианы тетраэдра  пересекаются в той же самой точке, что и медианы тетраэдра. Бимедианами тетраэдра называют отрезки, соединяющие середины его скрещивающихся рёбер (не имеющих общих вершин).

Лемма о трезубце[править | править код]

Центры сфер, которые проходят через три вершины и инцентр, лежат на сфере, центр которой совпадает с центром описанной сферы.Также это утверждение верно и для внешних инцентров.

Ортоцентр[править | править код]

Плоскости, которые проходят через середину ребра и перпендикулярны противоположному ребру,пересекаются в одной точке (ортоцентр).

Примечание:Ортоцентр в симплексе определяется как пересечение гиперплоскостей, которые перпендикулярны ребру и проходят через центр тяжести противоположного элемента.

Прямая Эйлера[править | править код]

Центр сферы(F),которая проходит через центры тяжести граней тетраэдра, центр тяжести тетраэдра(M), центр описанной сферы(R) и ортоцентр (H) лежат на одной прямой. При этом RM=MH=3MF.

Вторая прямая Эйлера[править | править код]

Центр сферы (S) вписанный в дополнительный тетраэдр,центр сферы (N) вписанный в антидополнительный тетраэдр, центр тяжести тетраэдра (M) и центр вписанной сферы (I) лежат на одной прямой.

Сфера Фейербаха (сфера 12 точек)[править | править код]

Пусть точка G1 делит отрезок соединяющий ортоцентр(H) и вершину 1 в отношении 1:2. Опустим перпендикуляр с точки G1 на грань противолежащей вершине 1. Перпендикуляр пересекает грань в точке W1. Точки G1 и W1 лежат на сфере, которая проходит через центры тяжести граней тетраэдра.

Типы тетраэдров[править | править код]

Равногранный тетраэдр[править | править код]

Развёртка равногранного тетраэдра

Все грани его представляют собой равные между собой треугольники. Развёрткой равногранного тетраэдра является треугольник, разделённый тремя средними линиями на четыре равных треугольника. В равногранном тетраэдре основания высот, середины высот и точки пересечения высот граней лежат на поверхности одной сферы (сферы 12 точек) (Аналог окружности Эйлера для треугольника).

Свойства равногранного тетраэдра:

  • Все его грани равны (конгруэнтны).
  • Скрещивающиеся рёбра попарно равны.
  • Трёхгранные углы равны.
  • Противолежащие двугранные углы равны.
  • Два плоских угла, опирающихся на одно ребро, равны.
  • Сумма плоских углов при каждой вершине равна 180°.
  • Развёртка тетраэдра — треугольник или параллелограмм.
  • Описанный параллелепипед прямоугольный.
  • Тетраэдр имеет три оси симметрии.
  • Общие перпендикуляры скрещивающихся рёбер попарно перпендикулярны.
  • Средние линии попарно перпендикулярны.
  • Периметры граней равны.
  • Площади граней равны.
  • Высоты тетраэдра равны.
  • Отрезки, соединяющие вершины с центрами тяжести противоположных граней, равны.
  • Радиусы описанных около граней окружностей равны.
  • Центр тяжести тетраэдра совпадает с центром описанной сферы.
  • Центр тяжести совпадает с центром вписанной сферы.
  • Центр описанной сферы совпадает с центром вписанной.
  • Вписанная сфера касается граней в центрах описанных около этих граней окружностей.
  • Сумма внешних единичных нормалей (единичных векторов, перпендикулярных к граням), равна нулю.
  • Сумма всех двугранных углов равна нулю.
  • Центры вневписанных сфер лежат на описанной сфере.

Ортоцентрический тетраэдр[править | править код]

Все высоты, опущенные из вершин на противоположные грани, пересекаются в одной точке.

  • Высоты тетраэдра пересекаются в одной точке.
  • Основания высот тетраэдра являются ортоцентрами граней.
  • Каждые два противоположных ребра тетраэдра перпендикулярны.
  • Суммы квадратов противоположных рёбер тетраэдра равны.
  • Отрезки, соединяющие середины противоположных рёбер тетраэдра, равны.
  • Произведения косинусов противоположных двугранных углов равны.
  • Сумма квадратов площадей граней вчетверо меньше суммы квадратов произведений противоположных рёбер.
  • У ортоцентрического тетраэдра окружности 9 точек (окружности Эйлера) каждой грани принадлежат одной сфере (сфере 24 точек).
  • У ортоцентрического тетраэдра центры тяжести и точки пересечения высот граней, а также точки, делящие отрезки каждой высоты тетраэдра от вершины до точки пересечения высот в отношении 2:1, лежат на одной сфере (сфере 12 точек).

Прямоугольный тетраэдр[править | править код]

Все рёбра, прилежащие к одной из вершин, перпендикулярны между собой. Прямоугольный тетраэдр получается отсечением тетраэдра плоскостью от прямоугольного параллелепипеда.

Каркасный тетраэдр[править | править код]

Это тетраэдр, отвечающий любому из следующих условий[4]:

  • существует сфера, касающаяся всех рёбер,
  • суммы длин скрещивающихся рёбер равны,
  • суммы двугранных углов при противоположных рёбрах равны,
  • окружности, вписанные в грани, попарно касаются,
  • все четырёхугольники, получающиеся на развёртке тетраэдра, — описанные,
  • перпендикуляры, восставленные к граням из центров вписанных в них окружностей, пересекаются в одной точке.

Соразмерный тетраэдр[править | править код]

У этого типа бивысоты равны.

Свойства соразмерного тетраэдра:

  • Бивысоты равны. Бивысотами тетраэдра называют общие перпендикуляры к двум скрещивающимся его рёбрам (рёбрам, не имеющим общих вершин).
  • Проекция тетраэдра на плоскость, перпендикулярную любой бимедиане, есть ромб. Бимедианами тетраэдра называют отрезки, соединяющие середины его скрещивающихся рёбер (не имеющих общих вершин).
  • Грани описанного параллелепипеда равновелики.
  • Выполняются соотношения: , где и , и , и  — длины противоположных рёбер.
  • Для каждой пары противоположных рёбер тетраэдра плоскости, проведённые через одно из них и середину второго, перпендикулярны.
  • В описанный параллелепипед соразмерного тетраэдра можно вписать сферу.

Инцентрический тетраэдр[править | править код]

У этого типа отрезки, соединяющие вершины тетраэдра с центрами окружностей, вписанных в противоположные грани, пересекаются в одной точке. Свойства инцентрического тетраэдра:

  • Отрезки, соединяющие центры тяжести граней тетраэдра с противоположными вершинами (медианы тетраэдра), всегда пересекаются в одной точке. Эта точка — центр тяжести тетраэдра.
  • Замечание. Если в последнем условии заменить центры тяжести граней на ортоцентры граней, то оно превратится в новое определение ортоцентрического тетраэдра. Если же заменить их на центры вписанных в грани окружностей, называемых иногда инцентрами, мы получим определение нового класса тетраэдров — инцентрических.
  • Отрезки, соединяющие вершины тетраэдра с центрами окружностей, вписанных в противоположные грани, пересекаются в одной точке.
  • Биссектрисы углов двух граней, проведённому к общему ребру этих граней, имеют общее основание.
  • Произведения длин противоположных рёбер равны.
  • Треугольник, образованный вторыми точками пересечения трёх рёбер, выходящих из одной вершины, с любой сферой, проходящей через три конца этих рёбер, является равносторонним.

Правильный тетраэдр[править | править код]

Это равногранный тетраэдр, у которого все грани правильные треугольники. Является одним из пяти тел Платона.

Свойства правильного тетраэдра:

  • все рёбра тетраэдра равны между собой,
  • все грани тетраэдра равны между собой,
  • периметры и площади всех граней равны между собой.
  • Правильный тетраэдр является одновременно ортоцентрическим, каркасным, равногранным, инцентрическим и соразмерным.
  • Тетраэдр является правильным, если он принадлежит к двум любым видам тетраэдров из перечисленных: ортоцентрический, каркасный, инцентрический, соразмерный, равногранный.
  • Тетраэдр является правильным, если он является равногранным и принадлежит к одному из следующих видов тетраэдров: ортоцентрический, каркасный, инцентрический, соразмерный.
  • В правильный тетраэдр можно вписать октаэдр, притом четыре (из восьми) грани октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести рёбер тетраэдра.
  • Правильный тетраэдр состоит из одного вписанного октаэдра (в центре) и четырёх тетраэдров (по вершинам), причём рёбра этих тетраэдров и октаэдра вдвое меньше рёбер правильного тетраэдра.
  • Правильный тетраэдр можно вписать в куб двумя способами, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба.
  • Правильный тетраэдр можно вписать в икосаэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.
  • Скрещивающиеся рёбра правильного тетраэдра взаимно перпендикулярны.

Объём тетраэдра[править | править код]

  • Объём тетраэдра (с учётом знака), вершины которого находятся в точках равен

или

где  — площадь любой грани, а  — высота, опущенная на эту грань.

  • Эта формула имеет плоский аналог для площади треугольника в виде варианта формулы Герона через аналогичный определитель.
  • Объём тетраэдра через длины двух противоположных рёбер a и b , как скрещивающихся линий, которые удалены на расстояние h друг от друга и образуют друг с другом угол , находится по формуле:

  • Объём тетраэдра через длины трёх его рёбер a,b и c, выходящих из одной вершины и образующих между собой попарно соответственно плоские углы , находится по формуле[5]

где

  • Аналогом для плоскости последней формулы является формула площади треугольника через длины двух его сторон a и b, выходящих из одной вершины и образующих между собой угол :

где

Формулы тетраэдра в декартовых координатах в пространстве[править | править код]

Обозначения:

— координаты вершин тетраэдра.

  • Объём тетраэдра (с учётом знака):

.

  • Координаты центра тяжести(пересечение медиан):

  • Координаты центра вписанной сферы:

где -площадь грани противолежащей первой вершине, -площадь грани противолежащей второй вершине и т. д.

Соответственно уравнение вписанной сферы:

Уравнение вневписанной сферы противолежащей первой вершине:

Уравнение вневписанной сферы противолежащей первой и второй вершин(количество таких сфер может варьироваться от 0 до 3-х):

  • Уравнение описанной сферы:

Формулы тетраэдра в барицентрических координатах[править | править код]

Обозначения:

 — барицентрические координаты.

  • Объём тетраэдра (с учётом знака): Пусть -координаты вершин тетраэдра.

Тогда

где -объем базисного тетраэдра.

  • Координаты центра тяжести(пересечение медиан):
  • Координаты центра вписанной сферы:
  • Координаты центра описанной сферы:

  • Расстояние между точками :

Пусть и т. д.

Тогда расстояние между двумя точками:

Сравнение формул треугольника и тетраэдра[править | править код]

Площадь(Объём)
,где -расстояние между вершинами 1 и 2
,

где -угол между гранями 1 и 2, и -площади граней противолежащие вершинам 1 и 2

Длина(площадь) биссектрисы
Длина медианы
Радиус вписанной окружности(сферы)
Радиус описанной окружности(сферы)
,где площадь треугольника со сторонами
Теорема косинусов
,

где -угол между гранями 1 и 2, и -площади граней противолежащие вершинам 1 и 2, - алгебраическое дополнение элемента матрицы

Теорема синусов
,

где -площади граней противолежащие вершинам 1,2,3,4, ,где -двугранные углы вершины.

Теорема о сумме углов треугольника(соотношение между двугранными углами тетраэдра)
,

где -угол между гранями 1 и 2,

Расстояние между центрами вписанной и описанной окружностей (сфер)
,

где -площади граней противолежащие вершинам 1,2,3,4.

Другая запись выражения: где расстояние между центром описанной сферы и центром сферы, проходящая через три вершины и инцентр.

Тетраэдр в неевклидовых пространствах[править | править код]

Объём неевклидовых тетраэдров[править | править код]

Существует множество формул нахождения объёма неевклидовых тетраэдров. Например формула Деревнина-Медных[6] для гиперболического тетраэдра и формула Дж. Мураками[7] для сферического тетраэдра. Объём тетраэдра в сферическом пространстве и в пространстве Лобачевского, как правило, не выражается через элементарные функции.

Соотношение между двугранными углами тетраэдра[править | править код]

,-для сферического тетраэдра.

,- для гиперболического тетраэдра.

Где ,- матрица Грама для двугранных углов сферического и гиперболического тетраэдра.

 — угол между гранями противолежащие i и j вершине.

Теорема косинусов[править | править код]

,-для сферического и гиперболического тетраэдра.

,-для сферического тетраэдра.

,-для гиперболического тетраэдра.

Где ,- матрица Грама для приведенных ребер сферического тетраэдра.

,- матрица Грама для приведенных ребер гиперболического тетраэдра.

 — приведенное расстояние между i и j вершин.

-алгебраическое дополнение матрицы .

Теорема синусов[править | править код]

,-для сферического и гиперболического тетраэдра.

Радиус описанной сферы[править | править код]

,- для сферического тетраэдра.

,- для гиперболического тетраэдра.

Радиус вписанной сферы[править | править код]

,- для сферического тетраэдра.

,- для гиперболического тетраэдра.

Тетраэдры в микромире[править | править код]

Тетраэдры в живой природе[править | править код]

Тетраэдр из грецких орехов

Некоторые плоды, находясь вчетвером на одной кисти, располагаются в вершинах тетраэдра, близкого к правильному. Такая конструкция обусловлена тем, что центры четырёх одинаковых шаров, касающихся друг друга, находятся в вершинах правильного тетраэдра. Поэтому похожие на шар плоды образуют подобное взаимное расположение. Например, таким образом могут располагаться грецкие орехи.

Тетраэдры в технике[править | править код]

  • Тетраэдр образует жёсткую, статически определимую конструкцию. Тетраэдр, выполненный из стержней, часто используется в качестве основы для пространственных несущих конструкций пролётов зданий, перекрытий, балок, ферм, мостов и т. д. Стержни испытывают только продольные нагрузки.
  • Прямоугольный тетраэдр используется в оптике. Если грани, имеющие прямой угол, покрыть светоотражающим составом или весь тетраэдр выполнить из материала с сильным светопреломлением, чтобы возникал эффект полного внутреннего отражения, то свет, направленный в грань, противоположную вершине с прямыми углами, будет отражаться в том же направлении, откуда он пришёл. Это свойство используется для создания уголковых отражателей, катафотов.
  • Граф четверичного триггера представляет собой тетраэдр[8].

Тетраэдры в философии[править | править код]

«Платон говорил, что наименьшие частицы огня суть тетраэдры». Вернер Гейзенберг. У истоков квантовой теории. М. 2004 г. стр.107

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]