Тетраэдр

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Тетра́эдр (греч. τετραεδρον — четырёхгранник) — простейший многогранник, гранями которого являются четыре треугольника[1]. У тетраэдра 4 грани, 4 вершины и 6 рёбер.

Тетраэдр, вписанный в куб
Правильный тетраэдр, вписанный в куб

Связанные определения[править | править исходный текст]

  • Отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани, называется его медианой, опущенной из данной вершины.
  • Отрезок, соединяющий середины скрещивающихся рёбер тетраэдра, называется его бимедианой, соединяющей данные рёбра.
  • Отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани, называется его высотой, опущенной из данной вершины.

Свойства тетраэдра[править | править исходный текст]

Правильный тетраэдр
Тетраэдр
Тип Правильный многогранник
Грань Треугольник
Вершин 4\,\!
Рёбер 6\,\!
Граней 4\,\!
Граней при вершине 3\,\!
Длина ребра a\,\!
Площадь полной поверхности \sqrt3a^2\,\!
Объём \frac{\sqrt2}{12}a^3
Высота \frac{\sqrt6}{3}a
Радиус вписанной сферы \frac{\sqrt6}{12}a
Радиус описанной сферы \frac{\sqrt6}{4}a
Угол наклона ребра \arctan\sqrt2\approx\frac{7}{23}\pi
Угол наклона грани \arctan2\sqrt2\approx\frac{29}{74}\pi
Телесный угол при вершине \arccos\frac{23}{27}\approx 0.55129 ср
Точечная группа симметрии \bar{4}3m\,, или Td
Двойственный многогранник Тетраэдр
  • Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед.
  • Все медианы тетраэдра пересекаются в одной точке, которая делит их в отношении 3:1, считая от вершины (теорема Коммандино)[2]. В этой же точке пересекаются и бимедианы тетраэдра, которые делятся ею пополам.
  • Плоскость, проходящая через середины двух скрещивающихся рёбер тетраэдра, делит его на две равные по объёму части.[3]:216-217

Типы тетраэдров[править | править исходный текст]

Выделяют следующие специальные виды тетраэдров.

  • Равногранный тетраэдр, у которого все грани — равные между собой треугольники.
  • Ортоцентрический тетраэдр, у которого все высоты, опущенные из вершин на противоположные грани, пересекаются в одной точке.
  • Прямоугольный тетраэдр, у которого все ребра, прилежащие к одной из вершин, перпендикулярны между собой.
  • Правильный тетраэдр, у которого все грани — равносторонние треугольники.
  • Каркасный тетраэдр — тетраэдр, отвечающий любому из следующих условий:[4]
    • существует сфера, касающаяся всех ребер,
    • суммы длин скрещивающихся ребер равны,
    • суммы двугранных углов при противоположных ребрах равны,
    • окружности, вписанные в грани, попарно касаются,
    • все четырехугольники, получающиеся на развертке тетраэдра, — описанные,
    • перпендикуляры, восставленные к граням из центров вписанных в них окружностей, пересекаются в одной точке.
  • Соразмерный тетраэдр, бивысоты которого равны.
  • Инцентрический тетраэдр, у которого отрезки, соединяющие вершины тетраэдра с центрами окружностей, вписанных в противоположные грани, пересекаются в одной точке.

Объём тетраэдра[править | править исходный текст]

Объём тетраэдра (с учетом знака), вершины которого находятся в точках ~ \mathbf{r}_1 (x_1,y_1,z_1),

~ \mathbf{r}_2 (x_2,y_2,z_2), ~ \mathbf{r}_3 (x_3,y_3,z_3), ~ \mathbf{r}_4 (x_4,y_4,z_4), равен

~ V = \frac16
\begin{vmatrix}
1 & x_1 & y_1 & z_1 \\
1 & x_2 & y_2 & z_2 \\
1 & x_3 & y_3 & z_3 \\
1 & x_4 & y_4 & z_4
\end{vmatrix}

Тетраэдры в микромире[править | править исходный текст]

Тетраэдры в живой природе[править | править исходный текст]

Тетраэдр из грецких орехов

Некоторые плоды, находясь вчетвером на одной кисти, располагаются в вершинах тетраэдра, близкого к правильному. Такая конструкция обусловлена тем, что центры четырёх одинаковых шаров, касающихся друг друга, находятся в вершинах правильного тетраэдра. Поэтому похожие на шар плоды образуют подобное взаимное расположение. Например, таким образом могут располагаться грецкие орехи.

Тетраэдры в технике[править | править исходный текст]

  • Тетраэдр образует жёсткую, статически определимую конструкцию. Тетраэдр, выполненный из стержней, часто используется в качестве основы для пространственных несущих конструкций пролётов зданий, перекрытий, балок, ферм, мостов и т. д. Стержни испытывают только продольные нагрузки.
  • Прямоугольный тетраэдр используется в оптике. Если грани, имеющие прямой угол, покрыть светоотражающим составом или весь тетраэдр выполнить из материала с сильным светопреломлением, чтобы возникал эффект полного внутреннего отражения, то свет, направленный в грань, противоположную вершине с прямыми углами, будет отражаться в том же направлении, откуда он пришёл. Это свойство используется для создания уголковых отражателей, катафотов.
  • Граф четверичного триггера представляет собой тетраэдр.[5]

Примечания[править | править исходный текст]

  1. Селиванов Д. Ф., Тело геометрическое // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  2. Глейзер Г. И.  История математики в школе. IX — X классы. — М.: Просвещение, 1983. — 351 с. — С. 312.
  3. Гусятников П.Б., Резниченко С.В. Векторная алгебра в примерах и задачах. — М.: Высшая школа, 1985. — 232 с.
  4. В. Э. МАТИЗЕН Равногранные и каркасные тетраэдры «Квант» № 7, 1983 г.
  5. http://knol.google.com/k/%D1%82%D1%80%D0%B8%D0%B3%D0%B3%D0%B5%D1%80#view Триггер