Риманова геометрия

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Ри́манова геоме́трия — это раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, т. е. гладкие многообразия с дополнительной структурой, римановой метрикой, иначе говоря — с выбором евклидовой метрики на каждом касательном пространстве, причём эта метрика гладко меняется от точки к точке. Иногда, особенно часто в математической физике, под римановой геометрией подразумевают также и псевдориманову геометрию многообразий с псевдоримановой метрикой, например, геометрию пространства-времени специальной и общей теории относительности.

Основным подразделом римановой геометрии в математике является геометрия в целом — раздел, который выявляет связь глобальных свойств риманова многообразия, таких как: топология, диаметр, объём — и его локальных свойств, к примеру, ограничений на кривизну.

История[править | править вики-текст]

Родоначальником римановой геометрии является немецкий математик Риман, который изложил её основные понятия в 1854 году.

После опубликования работ Римана его идеи привлекли внимание ряда математиков, которые развивали дальше аналитический аппарат римановой геометрии и устанавливали в ней новые геометрические теоремы. Важным вкладом в развитие римановой геометрии было создание итальянскими геометрами Риччи-Курбастро и его учеником Леви-Чивита на рубеже XX века тензорного исчисления, которое оказалось наиболее подходящим аналитическим аппаратом. Решающее значение имело применение римановой геометрии в создании общей теории относительности. Это привело к бурному развитию римановой геометрии и её разнообразных обобщений. В настоящее время риманова геометрия вместе с её обобщениями представляет собой обширную область геометрии, которая продолжает успешно развиваться.

Литература[править | править вики-текст]

  • Бураго Ю. Д., Залгаллер В. А. Введение в риманову геометрию, - СПб: Наука, 1994. 318 с.
  • Рашевский П.К. Риманова геометрия и тензорный анализ - М.:Наука, 1967.
  • Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. Методы и приложения - М.: Наука, 1979.
  • Постников М.М. Риманова геометрия (Лекции по геометрии. семестр V) - М.: Факториал Пресс, 1998. 496 с.
  • Громол Д., Клингенберг В., Мейер В. Риманова геометрия в целом - М.: Мир, 1971