Пространство-время

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
 Просмотр этого шаблона  Общая теория относительности
G_{\mu \nu} + \Lambda g_{\mu\nu} = {8\pi G\over c^4} T_{\mu \nu}\,
Гравитация
Математическая формулировка
Космология
См. также: Портал:Физика

Простра́нство-вре́мя (простра́нственно-временно́й конти́нуум) — физическая модель, дополняющая пространство равноправным[1] временны́м измерением и таким образом создающая теоретико-физическую конструкцию, которая называется пространственно-временным континуумом. Пространство-время непрерывно и с математической точки зрения представляет собой многообразие с лоренцевой метрикой.

В нерелятивистской классической механике использование Евклидова пространства, не зависящего от одномерного времени, вместо пространства-времени уместно, так как время рассматривается как всеобщее и неизменное, будучи независимым от состояния движения наблюдателя. В случае релятивистских моделей время не может быть отделено от трёх измерений пространства, потому что наблюдаемая скорость, с которой течёт время для объекта, зависит от его скорости относительно наблюдателя, а также от силы гравитационного поля, которое может замедлить течение времени.

В космологии и релятивистской физике вообще концепция пространства-времени объединяет пространство и время в одну абстрактную Вселенную. Математически она является многообразием, состоящим из «событий», описанных системой координат. Обычно требуется три пространственных измерения (длина, ширина, высота) и одно временное измерение (время). Измерения — это независимые составляющие координатной сетки, необходимые для локализации точки в некотором ограниченном «пространстве». Например, на Земле широта и долгота — это две независимые координаты, которые вместе однозначно определяют положение. В пространстве-времени координатная сетка, которая простирается в 3+1 измерениях, локализует события (вместо просто точки в пространстве), то есть время добавляется как ещё одно измерение в координатной сетке. Таким образом, координаты определяют где и когда происходят события. Однако единая природа пространства-времени и его независимость от выбора координат позволяют предположить, что чтобы выразить временную координату в одной системе координат, необходимы как временная, так и пространственная координаты в другой системе координат. В отличие от обычных пространственных координат, в пространстве-времени возникает понятие светового конуса, накладывающее ограничения на допустимые координаты, если одна из них везде должна быть временной. Эти ограничения жёстко связаны с особой математической моделью, которая отличается от Евклидова пространства с его очевидной симметрией.

В соответствии с теорией относительности, Вселенная имеет три пространственных измерения и одно временное измерение, и все четыре измерения органически связаны в единое целое, являясь почти равноправными и в определенных рамках (см. примечания ниже) способными переходить друг в друга при смене наблюдателем системы отсчёта.

В рамках общей теории относительности пространство-время имеет и единую динамическую природу, а его взаимодействие со всеми остальными физическими объектами (телами, полями) и есть гравитация. Таким образом, теория гравитации в рамках ОТО и других метрических теорий гравитации есть теория пространства-времени, полагаемого не плоским, а способным динамически менять свою кривизну.

До начала двадцатого века время полагалось независимым от состояния движения, протекающим с постоянной скоростью во всех системах отсчёта; однако затем эксперименты показали, что время замедляется при больших скоростях одной системы отсчёта относительно другой. Это замедление, названное релятивистским замедлением времени, объясняется в специальной теории относительности. Замедление времени подтвердили многие эксперименты, такие как релятивистское замедление распада мюонов в потоке космических лучей и замедление атомных часов на борту космического челнока, ракеты и самолётов относительно установленных на Земле часов. Длительность времени поэтому может меняться в зависимости от событий и системы отсчёта.

Термин пространство-время получил широкое распространение далеко за пределами трактовки пространства-времени с нормальными 3+1 измерениями. Это действительно соединение пространства и времени. Другие предложенные теории пространства-времени включают дополнительные измерения, обычно пространственные, но существуют некоторые умозрительные теории, включающие дополнительные временные измерения, и даже такие, которые включают измерения, не являющиеся ни временными, ни пространственными (например, суперпространство). Сколько измерений необходимо для описания Вселенной — этот вопрос до сих пор открыт. Умозрительные теории, такие как теория струн, предсказывают 10 или 26 измерений (с М-теорией, предсказывающей 11 измерений: 10 пространственных и 1 временное), но существование более четырёх измерений имело бы значение только на субатомном уровне.

Пространство-время в литературе[править | править вики-текст]

Инки представляли пространство и время единым понятием, называемым pacha (кечуа pacha, аймара pacha). Народы Анд сохранили это представление до сих пор.

Артур Шопенгауэр писал в § 18 труда «О четверояком корне закона достаточного основания» (1813): «…только во времени представление сосуществования невозможно; в другой своей половине оно обусловлено представлением пространства, так как только во времени все есть одно после другого, в пространстве же — одно подле другого: таким образом, это представление возникает только из соединения времени и пространства».

Идея о едином пространстве-времени изложена Эдгаром Аланом По в его очерке о космологии, озаглавленном «Эврика» (1848): «Пространство и длительность суть одно».

В 1895 в романе Машина времени Герберт Уэлс писал: «Между временем и тремя измерениями пространства нет никакой разницы, за исключением того, что во времени движется наше сознание», и что «…каждое реальное тело должно обладать четырьмя измерениями: оно должно иметь длину, ширину, высоту и продолжительность существования».

Современные физические представления[править | править вики-текст]

Первый развёрнутый вариант модели естественного объединения пространства и времени, пространство Минковского, был создан Германом Минковским в 1908 году[2] на основе специальной теории относительности Эйнштейна, а несколько ранее (в 1905 году), ключевое продвижение на этом пути сделал Анри Пуанкаре, заложивший основы четырёхмерного пространственно-временного формализма.

Концепцию пространства-времени допускает и классическая механика[3], но в ней это объединение искусственно, так как пространство-время классической механики — прямое произведение пространства на время, то есть пространство и время независимы друг от друга. Однако уже классическая электродинамика требует при смене системы отсчета преобразований координат, включающих время «наравне» с пространственными координатами (т. н. преобразований Лоренца), если желать, чтобы уравнения электродинамики имели одинаковый вид в любой инерциальной системе отсчета. Непосредственно наблюдаемые временные характеристики электромагнитных процессов (периоды колебаний, времена распространения электромагнитных волн и т. п.) уже в классической электродинамике оказываются зависящими от системы отсчета (или, иначе говоря, от относительного движения наблюдателя и объекта наблюдения), то есть оказываются не «абсолютными», а определенным образом связанными с пространственным движением и даже положением в пространстве системы отсчёта, что и явилось первым толчком для формирования современной физической концепции единого пространства-времени.

Ключевым математическим отличием пространства-времени (пространства Минковского, или, в случае общей теории относительности — четырёхмерного многообразия с лоренцевой метрикой) от обычного евклидова 4-мерного пространства является то, что при вычислении расстояния (интервала) квадраты значений разностей времени и длин пространственных координат берутся с противоположными знаками (в обычном пространстве соответствующие значения равноправны для любой оси координат и имеют одинаковый знак). Из этого вытекает следующее: прямая между двумя точками этого континуума (под прямой понимается движение по инерции) даёт максимальную продолжительность собственного времени (интервала). Для пространственной же длины прямая — это минимальная, а не максимальная величина.

В контексте теории относительности время неотделимо от трёх пространственных измерений и зависит от скорости наблюдателя[4] (см. собственное время).

Концепция пространства-времени сыграла исторически ключевую роль в создании геометрической теории гравитации. В рамках общей теории относительности гравитационное поле сводится к проявлениям геометрии четырёхмерного пространства-времени, которое в этой теории не является плоским (гравитационный потенциал в ней отождествлен с метрикой пространства-времени).

Количество измерений, необходимых для описания Вселенной, окончательно не определено. Теория струн (суперструн), например, требовала наличия 10 (считая время), а теперь даже 11 измерений (в рамках М-теории). Предполагается, что дополнительные (ненаблюдаемые) 6 или 7 измерений свёрнуты (компактифицированы) до планковских размеров, так что экспериментально они пока не могут быть обнаружены. Ожидается, тем не менее, что эти измерения каким-то образом проявляют себя в макроскопическом масштабе. В самом старом — бозонном — варианте теория струн требует 26-мерного объемлющего пространства-времени; предполагается, что «лишние» измерения этой теории также должны или могут быть компактифицированы сперва до 10, сводясь таким образом к теории суперструн, а потом уже, как упомянуто здесь чуть выше, до 4 обычных измерений.

Особый характер пространства-времени с размерностью 3+1[править | править вики-текст]

Существует два вида размерностей: пространственные и временные. Пространственную размерность обозначают буквой N, а временную буквой Т. Пространственно-временной континуум с размерностью N=3 и Т=1 имеет преимущество с точки зрения антропного принципа.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Точнее, почти равноправным: на самом деле практически в любой современной формулировке временное измерение сохраняет некоторое отличие от пространственных, хотя это часто замаскировано. Это отличие проявляется прежде всего в сигнатуре метрики пространства-времени (см. Пространство Минковского).
  2. Hermann Minkowski, «Raum und Zeit», 80. Versammlung Deutscher Naturforscher (Köln, 1908). Published in Physikalische Zeitschrift 10 104—111 (1909) and Jahresbericht der Deutschen Mathematiker-Vereinigung 18 75-88 (1909).
  3. Работы В. И. Арнольда, в частности, «Математические методы классической механики».
  4. Притом, что формально переход к движущейся системе отсчета аналогичен повороту осей в пространстве Минковского (и это даёт простой и компактный способ пересчета реальных физических величин, то есть имеет вполне наблюдаемые нетривиальные физические следствия!), тем не менее, как бы не интерпретировать эту формальную аналогию с поворотом в обычном пространстве, на повороты в пространстве-времени наложены существенные физические ограничения, также определяющие ограничения аналогии пространства-времени с обычным евклидовым пространством, хотя бы и четырёхмерным (то есть описываемое в этом примечании — это ещё одна сторона качественного отличия пространства-время теории относительности от «просто» четырёхмерного пространства). Так, в рамках специальной теории относительности невозможен, а в рамках общей (где надежный анализ всех сложных случаев сильно затруднен) — крайне сомнителен, плавный непрерывный поворот движения наблюдателя в сторону обратного движения по времени (тогда как в обычном пространстве можно поворачивать в любую сторону).

Ссылки[править | править вики-текст]