Сопряжённое априорное распределение

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Сопряжённое априорное распределение (англ. conjugate prior) и сопряжённое семейство распределений — одни из основных понятий в байесовской статистике.

Рассмотрим задачу о нахождении распределения параметра (рассматриваемого как случайная величина) по имеющемуся наблюдению . По теореме Байеса, апостериорное распределение вычисляется из априорного распределения с плотностью вероятности и функции правдоподобия по формуле:

Если апостериорное распределение принадлежит тому же семейству вероятностных распределений, что и априорное распределение (т.е. имеет тот же вид, но с другими параметрами), то это семейство распределений называется сопряжённым семейству функций правдоподобия . При этом распределение называется сопряжённым априорным распределением к семейству функций правдоподобия .

Знание сопряжённых семейств распределений существенно упрощает вычисление апостериорных вероятностей в байесовской статистике, так как позволяет заменить вычисление громоздких интегралов в формуле Байеса простыми алгебраическими манипуляциями над параметрами распределений.

Для случайной величины, распределённой по закону Бернулли (бросание монетки) с неизвестным параметром (вероятность успеха), в качестве сопряжённого априорного распределения обычно выступает бета-распределение с плотностью вероятности:

где и выбираются так, чтобы отразить имеющуюся априорную информацию или убеждение о распределении параметра q (выбор = 1 and = 1 даст равномерное распределение), а Β() — бета-функция, служащая здесь для нормализации вероятности.

Параметры и часто называют гиперпараметрами (параметрами априорного распределения), чтобы отличить их от параметров функции правдоподобия (в данном случае, q).

Если взять выборку из n значений этой случайной величины, и среди них окажется s успехов и f неудач, то апостериорное распределение параметра q будет равно:

Это апостериорное распределение также оказывается распределённым по закону бета-распределения.

Таблица сопряжённых семейств распределений

[править | править код]

В таблицах ниже показано каким образом изменяются параметры апостериорного распределения после выборки из n независимых, одинаково-распределённых наблюдений . Второй столбец — параметр функции правдоподобия, относительно которого строится семейство сопряжённых распределений.

Дискретно-распределённые функции правдоподобия

[править | править код]
Функция правдоподобия Параметр Сопряжённое семейство распределений Гиперпараметры априорного распределения Гиперпараметры апостериорного распределения
Бернулли p Бета
Биномиальное p Бета
Отрицательное биномиальное p Бета
Пуассона λ Гамма
Пуассона λ Гамма [1]
Мультиномиальное p (вектор вероятностей) Дирихле
Геометрическое p0 (вероятность) Бета

Непрерывно-распределённые функции правдоподобия

[править | править код]
Функция правдоподобия Параметр Сопряжённое семейство распределений Гиперпараметры априорного распределения Гиперпараметры апостериорного распределения
Равномерное Парето
Экспоненциальное λ Гамма [2]
Нормальное
с известной дисперсией σ2
μ Нормальное
Нормальное
с известным τ = 1/σ2
μ Нормальное
Нормальное
с известным средним μ
σ2 Scaled inverse chi-square
Нормальное
с известным средним μ
τ (= 1/σ2) Гамма [2]
Нормальное
с известным средним μ
σ2 Обратное гамма-распределение
Парето k Гамма
Парето xm Парето при условии .
Гамма
с известной α[1]
β (inverse scale) Гамма

Примечания

[править | править код]
  1. 1 2 Параметризация гамма-распределения с параметрами: θ = 1/β and k = α.
  2. 1 2 beta_rate

Литература

[править | править код]
  • DeGroot, Morris H. Optimal Statistical Decisions. Wiley Classics Library. 2004. (Originally published in 1970.) ISBN 0-471-68029-X.