Распределение Парето

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Распределение Парето
Плотность вероятности
Pareto distributionPDF.png
Функция распределения
Pareto distributionCDF.png
Обозначение
Параметры  — коэффициент масштаба
Носитель
Плотность вероятности
Функция распределения
Математическое ожидание , если
Медиана
Мода
Дисперсия при
Коэффициент асимметрии при
Коэффициент эксцесса при
Дифференциальная энтропия
Производящая функция моментов не определена
Характеристическая функция

Распределе́ние Паре́то в теории вероятностей — двухпараметрическое семейство абсолютно непрерывных распределений, являющихся степенными. Называется по имени Вилфредо Парето. Встречается при исследовании различных явлений, в частности, социальных, экономических, физических и других[1]. Вне области экономики иногда называется также распределением Брэдфорда.

Определение[править | править вики-текст]

Пусть случайная величина такова, что её распределение задаётся равенством:

,

где . Тогда говорят, что имеет распределение Парето с параметрами и . Плотность распределения Парето имеет вид:

Моменты[править | править вики-текст]

Моменты случайной величины, имеющей распределение Парето, задаются формулой:

,

откуда в частности:

,
.

Приложения[править | править вики-текст]

Вилфредо Парето изначально использовал это распределение для описания распределения благосостояния, а также распределения дохода[2]. Его правило 20 к 80 (которое гласит: 20% популяции владеет 80 % богатства) однако зависит от конкретной величины k, и утверждается, что фактически встречаются существенные количественные отклонения, например, данные самого Парето по Британии в Cours d'économie politique говорят, что там примерно 30 % населения владеет 70 % общего дохода.

Распределение Парето встречается не только в экономике. Можно привести следующие примеры:

  • В лингвистике распределение Парето известно под именем закона Ципфа (для разных языков показатель степени может несколько различаться, также существует небольшое отклонение от простой степенной зависимости у самых частотных слов, однако в целом степенной закон описывает это распределение достаточно хорошо). Частными проявлениями этой закономерности можно считать:
    • Зависимость абсолютной частоты слов (сколько всего раз каждое конкретное слово встретилось) в достаточно длинном тексте от ранга (порядкового номера при упорядочении слов по абсолютной частоте). Степенной характер остается вне зависимости от того, приводятся ли слова к начальной форме или берутся из текста как есть.
    • Аналогичная кривая для популярности имен.
  • Распределение размера населенных пунктов.[3]
  • Распределение размера файла в интернет-трафике по TCP-протоколу.[3][нет в источнике]


См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Guerriero, V. (2012). «Power Law Distribution: Method of Multi-scale Inferential Statistics». Journal of Modern Mathematics Frontier (JMMF), 1: 21-28.
  2. Pareto, Vilfredo, Cours d’Économie Politique: Nouvelle édition par G.-H. Bousquet et G. Busino, Librairie Droz, Geneva, 1964, pages 299—345.
  3. 1 2 William J. Reed et al., «The Double Pareto-Lognormal Distribution — A New Parametric Model for Size Distributions», Communications in Statistics : Theory and Methods 33(8), 1733—1753, 2004 p 18 et seq.


Bvn-small.png п о р       Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | Биномиальное | Геометрическое | Гипергеометрическое | Логарифмическое | Отрицательное биномиальное | Пуассона | Дискретное равномерное Мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Гиперэкспоненциальное | Распределение Гомпертца | Колмогорова | Коши | Лапласа | Логнормальное | Нормальное (Гаусса) | Логистическое | Накагами | Парето | Пирсона | Полукруговое | Непрерывное равномерное | Райса | Рэлея | Стьюдента | Трейси — Видома | Фишера | Хи-квадрат | Экспоненциальное | Variance-gamma Многомерное нормальное | Копула