Мультиномиальное распределение

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Мультиномиа́льное (полиномиа́льное) распределе́ние в теории вероятностей — это обобщение биномиального распределения на случай независимых испытаний случайного эксперимента с несколькими возможными исходами.

Определение[править | править вики-текст]

Пусть  — независимые одинаково распределённые случайные величины, такие, что их распределение задаётся функцией вероятности:

.

Интуитивно событие означает, что испытание с номером привело к исходу . Пусть случайная величина равна количеству испытаний, приведших к исходу :

.

Тогда распределение вектора имеет функцию вероятности

,

где

 — мультиномиальный коэффициент.

Вектор средних и матрица ковариации[править | править вики-текст]

Математическое ожидание случайной величины имеет вид: . Диагональные элементы матрицы ковариации являются дисперсиями биномиальных случайных величин, а следовательно

.

Для остальных элементов имеем

.

Ранг матрицы ковариации мультиномиального распределения равен .

Bvn-small.png п о р       Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | Биномиальное | Геометрическое | Гипергеометрическое | Логарифмическое | Отрицательное биномиальное | Пуассона | Дискретное равномерное Мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Гиперэкспоненциальное | Распределение Гомпертца | Колмогорова | Коши | Лапласа | Логнормальное | Нормальное (Гаусса) | Логистическое | Накагами | Парето | Пирсона | Полукруговое | Непрерывное равномерное | Райса | Рэлея | Стьюдента | Трейси — Видома | Фишера | Хи-квадрат | Экспоненциальное | Variance-gamma Многомерное нормальное | Копула