Мультиномиальное распределение

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Мультиномиа́льное (полиномиа́льное) распределе́ние в теории вероятностей — это обобщение биномиального распределения на случай независимых испытаний случайного эксперимента с несколькими возможными исходами.

Определение[править | править исходный текст]

Пусть X_1,\ldots, X_n — независимые одинаково распределённые случайные величины, такие, что их распределение задаётся функцией вероятности:

\mathbb{P}(X_i = j) = p_j,\; j=1,\ldots, k.

Интуитивно событие \{X_i = j\} означает, что испытание с номером i привело к исходу j. Пусть случайная величина Y_j равна количеству испытаний, приведших к исходу j:

Y_j = \sum_{i=1}^n \mathbf{1}_{\{X_i = j\}},\; j = 1,\ldots, k.

Тогда распределение вектора \mathbf{Y} = (Y_1,\ldots,Y_k)^{\top} имеет функцию вероятности

p_{\mathbf{Y}}(\mathbf{y}) = \left\{
\begin{matrix}
{n \choose {y_1 \ldots y_k}} p_1^{y_1}\ldots p_k^{y_k}, & \sum\limits_{j=1}^k y_j = n \\
0, & \sum\limits_{j=1}^k y_j \not= n 
\end{matrix}
\right., \quad \mathbf{y} = (y_1,\ldots, y_k)^{\top} \in \mathbb{N}^k_1,

где

{n \choose {y_1 \ldots y_k}} \equiv \frac{n!}{y_1! \ldots y_k!} — мультиномиальный коэффициент.

Вектор средних и матрица ковариации[править | править исходный текст]

Математическое ожидание случайной величины Y_j имеет вид: \mathbb{E}[Y_j] = np_j. Диагональные элементы матрицы ковариации \Sigma = (\sigma_{ij}) являются дисперсиями биномиальных случайных величин, а следовательно

\sigma_{jj}=\mathrm{D}[Y_j] = np_j(1-p_j),\; j =1,\ldots, k.

Для остальных элементов имеем

\sigma_{ij} = \mathrm{cov}(Y_i,Y_j) = -np_ip_j,\; i \not= j.

Ранг матрицы ковариации мультиномиального распределения равен k-1.

Bvn-small.png  п·о·р        Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | дискретное равномерное мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | гиперэкспоненциальное | Колмогорова | Коши | Лапласа | логнормальное | нормальное (Гаусса) | логистическое | Накагами |Парето | полукруговое | непрерывное равномерное | Райса | Рэлея | Стьюдента | Фишера | хи-квадрат | экспоненциальное | variance-gamma многомерное нормальное | копула