3-3 дуопризма

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
3-3 дуопризма

Диаграмма Шлегеля
Type Однородная дуопризма
Символ Шлефли {3}×{3} = {3}2
Диаграммы Коксетера — Дынкина node_13node2node_13node
Ячеек 6 треугольных призм
Граней 9 квадратов,
6 треугольников
Рёбер 18
Вершин 9
Вершинная фигура
Равногранный тетраэдр
Симметрия[en] [[3,2,3]] = [6,2+,6], order 72
Двойственный 3-3 дуопирамида[en]
Свойства выпуклый, вершинно однородный, гранетранзитивный

3-3 дуопризма или треугольная дуопризма, наименьшая из p-q дуопризм, это четырёхмерный многогранник, получающийся прямым произведением двух треугольников.

Многогранник имеет 9 вершин, 18 рёбер, 15 граней (9 квадратов и 6 треугольников) в 6 ячейках в форме треугольных призм. Он имеет диаграмму Коксетера branch_102branch_10 и симметрию [[3,2,3]] порядка 72. Его вершины и рёбра образуют ладейный граф.

Гиперобъём[править | править код]

Гиперобъём однородной[en] 3-3 дуопризмы с рёбрами длины a равен . Он вычисляется как квадрат площади правильного треугольника, .

Изображения[править | править код]

Ортогональные проекции
Развёртка Вершинная перспектива 3D перспективная проекция с 2 различными вращениями

Симметрия[править | править код]

В 5-мерных пространствах некоторые однородные многогранники[en] имеют 3-3 дуопризму в качестве вершинных фигур, некоторые с неравными длинами рёбер, а потому с меньшей симметрией:

Симметрия [[3,2,3]], order 72 [3,2], order 12
Диаграмма
Коксетера
node3node3node_13node3node
nodessplit2node_13node3node
node_13node3node3node_13node node_14node3node3node_13node node_13node3node3node_14node
Диаграмма
Шлегеля
Название t2α5[en] t03α5[en] t03γ5[en] t03β5[en]

Биспрямлённые 16-ячеечные соты[en] также имеют 3-3 дуопризму в качестве вершинных фигур. Имеется три построения для сот с двумя меньшими симметриями.

Симметрия [3,2,3], порядок 36 [3,2], порядок 12 [3], порядок 6
Диаграмма
Коксетера
node3node3node_14node3node node4node_13nodesplit1nodes_10lu node3nodesplitsplit1branch3_11node_1
Косая
ортогональная
проекция

Связанные комплексные многоугольники[править | править код]

Правильный комплексный многогранник 3{4}2, 3node_14node в имеет вещественное представление как 3-3 дуопризма в 4-мерном пространстве. 3{4}2 имеет 9 вершин и 6 3-рёбер. Его группа симметрии 3[4]2 имеет порядок 18. Многогранник имеет также построение с меньшей симметрией 3node_123node_1 или 3{}×3{} с симметрией 3[2]3 порядка 9. Эта симметрия возникает, если красные и синие 3-рёбра считать различными[1].


Перспективная проекция

Ортогональная проекция с совпадающими центральными вершинами

Ортогональная проекция со смещением, чтобы избежать наложение элементов.

Связанные многогранники[править | править код]

k22 фигуры в n-мерных пространствах
Пространство Конечное Евклидово Гиперболическое
n 4 5 6 7 8
Группа
Коксетера
2A2 A5 E6 =E6+ =E6++
Диаграмма
Коксетера
nodes3abnodes_11 nodes3abnodessplit2node_1 nodes3abnodessplit2node3node_1 nodes3abnodessplit2node3node3node_1 nodes3abnodessplit2node3node3node3node_1
Симметрия [[32,2,-1]] [[32,2,0]] [[32,2,1]] [[32,2,2]] [[32,2,3]]
Порядок 72 1440 103,680
Граф
Название -122 022 122 222 322

3-3 дуопирамида[править | править код]

3-3 дуопирамида
Type Однородная двойственная дуопирамида[en]
Символ Шлефли {3}+{3} = 2{3}
Диаграмма Коксетера node_f13node2xnode_f13node
Ячейки 9 равногранных тетраэдров
Грпани 18 равнобедренных треугольников
Рёбер 15 (9+6)
Вершин 6 (3+3)
Симметрия[en] [[3,2,3]] = [6,2+,6], order 72
Двойственный 3-3 дуопризма
Свойствия выпуклый, вершинно однородный, гранетранзитивный

Двойственный многогранник для 3-3 дуопризмы называется 3-3 дуопирамидой[en] или треугольной дуопирамидой. Он имеет 9 ячеек в виде равногранных тетраэдров, 18 треугольных граней, 15 рёбер и 6 вершин.

Многогранник можно рассматривать в ортогональной проекции как 6-угольник, в котором рёбра соединяют все пары вершин, точно как в 5-симплексе.


ортогональная проекция

Связанный комплексный многоугольник[править | править код]

Комплексный многоугольник 2{4}3 имеет 6 вершин в с вещественным представлением в с тем же расположением вершин[en] как у 3-3 дуопирамиды. Многогранник имеет 9 2-рёбер, соответствующих рёбрам 3-3 дуопирамиды, но 6 рёбер, соединяющих два треугольника, не включены. Его можно рассматривать в шестиугольной проекции с 3 наборами раскрашенных рёбер. Это расположение вершин и рёбер даёт полный двудольный граф, в котором каждая вершина одного треугольника связана с каждой вершиной другого. Граф называется также графом Томсена или 4-клеткой[2].


2{4}3 с 6 вершинами (синими и красными) связанные 9 2-рёбрами в виде полного двудольного графа.

Граф имеет 3 набора из 3 рёбер, показанных цветом.

См. также[править | править код]

Примечания[править | править код]

  1. Coxeter, 1991.
  2. Coxeter, 1991, с. 110, 114.

Литература[править | править код]

  • Coxeter H.S.M. Regular Polytopes[en]. — 3rd (1947, 63, 73). — New York: Dover Publications Inc., 1973. — ISBN 0-486-61480-8.
  • Coxeter H.S.M. Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues // The Beauty of Geometry: Twelve Essays. — Dover Publications, 1999. — С. 212-213. — ISBN 0-486-40919-8.
    • Coxeter H.S.M. Regular Skew Polyhedra in Three and Four Dimensions // Proc. London Math. Soc.. — 1937. — Вып. 43. — С. 33–62.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass. Chapter 26 // The Symmetries of Things. — 2008. — ISBN 978-1-56881-220-5.
  • N.W. Johnson. Uniform Polytopes. — 1991. — (Manuscript).
    • N.W. Johnson. The Theory of Uniform Polytopes and Honeycombs. — University of Toronto, 1966. — (Ph.D. Dissertation).
  • Catalogue of Convex Polychora, section 6 George Olshevsky
  • Glossary for Hyperspace (Словарь терминов) George Olshevsky
  • Apollonian Ball Packings and Stacked Polytopes // Discrete & Computational Geometry. — 2016. — Июнь (т. 55, вып. 4). — С. 801–826.

Ссылки[править | править код]