EM-алгоритм

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

EM-алгоритм (англ. Expectation-maximization (EM) algorithm) — алгоритм, используемый в математической статистике для нахождения оценок максимального правдоподобия параметров вероятностных моделей, в случае, когда модель зависит от некоторых скрытых переменных. Каждая итерация алгоритма состоит из двух шагов. На E-шаге (expectation) вычисляется ожидаемое значение функции правдоподобия, при этом скрытые переменные рассматриваются как наблюдаемые. На M-шаге (maximization) вычисляется оценка максимального правдоподобия, таким образом увеличивается ожидаемое правдоподобие, вычисляемое на E-шаге. Затем это значение используется для E-шага на следующей итерации. Алгоритм выполняется до сходимости.

Часто EM-алгоритм используют для разделения смеси гауссиан.

Описание алгоритма[править | править вики-текст]

Пусть  — некоторые из значений наблюдаемых переменных, а  — скрытые переменные. Вместе и образуют полный набор данных. Вообще, может быть некоторой подсказкой, которая облегчает решение проблемы в случае, если она известна. Например, если имеется смесь распределений, функция правдоподобия легко выражается через параметры отдельных распределений смеси.

Положим  — плотность вероятности (в непрерывном случае) или функция вероятности (в дискретном случае) полного набора данных с параметрами : Эту функцию можно понимать как правдоподобие всей модели, если рассматривать её как функцию параметров . Заметим, что условное распределение скрытой компоненты при некотором наблюдении и фиксированном наборе параметров может быть выражено так:

,

используя расширенную формулу Байеса и формулу полной вероятности. Таким образом, нам необходимо знать только распределение наблюдаемой компоненты при фиксированной скрытой и вероятности скрытых данных .

EM-алгоритм итеративно улучшает начальную оценку , вычисляя новые значения оценок и так далее. На каждом шаге переход к от выполняется следующим образом:

где  — матожидание логарифма правдоподобия. Другими словами, мы не можем сразу вычислить точное правдоподобие, но по известным данным () мы можем найти апостериорную оценку вероятностей для различных значений скрытых переменных . Для каждого набора значений и параметров мы можем вычислить матожидание функции правдоподобия по данному набору . Оно зависит от предыдущего значения , потому что это значение влияет на вероятности скрытых переменных .

вычисляется следующим образом:

то есть это условное матожидание при условии .

Другими словами,  — это значение, максимизирующее (M) условное матожидание (E) логарифма правдоподобия при данных значениях наблюдаемых переменных и предыдущем значении параметров. В непрерывном случае значение вычисляется так:

Альтернативное описание[править | править вики-текст]

При определенных обстоятельствах удобно рассматривать EM-алгоритм как два чередующихся шага максимизации.[1][2] Рассмотрим функцию:

где q — распределение вероятностей ненаблюдаемых переменных Z; pZ|X(· |x;θ) — условное распределение ненаблюдаемых переменных при фиксированных наблюдаемых x и параметрах θ; H — энтропия и DKL — расстояние Кульбака-Лейблера.

Тогда шаги EM-алгоритма можно представить как:

E(xpectation) шаг: Выбираем q, чтобы максимизировать F:
M(aximization) шаг: Выбираем θ, чтобы максимизировать F:

Примеры использования[править | править вики-текст]

Примечания[править | править вики-текст]

  1. (1999) «A view of the EM algorithm that justifies incremental, sparse, and other variants». Learning in Graphical Models (MIT Press): 355–368. Проверено 2009-03-22.
  2. 8.5 The EM algorithm // The Elements of Statistical Learning. — New York: Springer, 2001. — P. 236–243.

Ссылки[править | править вики-текст]