Обобщённые координаты: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Содержимое удалено Содержимое добавлено
Новая страница: «'''Обобщенных координат''' — параметры, описывающие Конфигурационное простран…»
(нет различий)

Версия от 02:20, 3 января 2016

Обобщенных координат — параметры, описывающие конфигурацию динамической системы относительно некоторой эталонной конфигурации в аналитической механике, а конкретно исследовании динамики твердых тел в системе многих тел. Эти параметры должны однозначно определять конфигурацию системы относительно эталонной конфигурации.[1] Обобщенные скорости — производные по времени обобщенных координат системы.

Пример обобщенной координаты — угол, который определяет местоположение точки, двигающейся по окружности. Прилагательное «обобщенная» используется, чтобы отличать эти параметры от традиционного использования термина координат для обозначения Декартовых координат: например, описывая расположение точки на окружности через X и Y координаты.

Хотя может существовать много вариантов выбора обобщенных координат физической системы, обычно выюираются параметры, которые удобны для уточнения конфигурации системы и которые упрощают решение уравнения движения. Если эти параметры не зависят друг от друга, то число независимых обобщенных координат определяется числом степеней свободы системы.[2][3]

Связи и степени свободы

Обобщенные координат обычно выбираются, чтобы обеспечить минимальное число независимых координат, определяющих конфигурацию системы, которая упрощает формулировку уравнений движения Лагранжа. Однако, может случиться, что полезный набор обобщенных координат окажутся зависимыми, что означает, что они связаны одним или более уравнений связи.

Голономные связи

Для системы из N частиц в 3Д реальном координатном пространстве, вектор положения каждой частицы можно записать тройками чиселе в декартовых координатах;

Любые векторы можно обозначить как rk, где k = 1, 2, …, N обозначает частицу. Голономная связь — это кравнение ограничения для частицы k[4][nb 1]

которая связывает все 3 пространственные координаты частицы вместе, так что они не являются независимыми. Ограничения могут изменяться со временем, поэтому время t появится явно в уравнения связи. В любой момент времени, когда t является константой, одна координата будет функцией от других координат, например, если xk K и zk заданы, то также задана и yk. Одно уравнение связи считается одной связью. Для C связей будет C уравнений связи. Не обязательно одно уравнение связи соответствует каждой частицы, и если нет ограничений в системе, то не будет никаких уравнений связи.

Пока конфигурация системы определяется числом 3C, но C координат можно устранить, по одной из координат на каждое уравнение связи. Число независимых координат n = 3N − C. (При размерности D исходной конфигурации потребуется - ND координат, и сокращение согласно связям приведёт к n = NDC). Идеально использовать минимальное число координат, необходимых для определения конфигурации всей системы воспользовавшись уравнениями связей. Эти величины известны как обобщенные координаты в данном контексте обозначаются как qj(t). Удобно собирать их в n-кортеж

которая является точкой в конфигурационном пространстве системы. Они все независимы друг от друга, и каждая является функцией времени. Геометрически они могут быть длинами вдоль прямой линии или длинами дуг вдоль кривых линий, или углами; не обязательно декартовыми координатами или другими стандартными ортогональными координатами. Каждой степени свободы соответствует одна обобщённая координата, так что число обобщенных координат равно числу степеней свободы, n. Степени свободы соответствует одна величина, соответствующая изменению конфигурации системы, например угол маятника, или длина дуги, пройденной бусинкой на проволоке.

Если можно найти из уравнений связи столько независимых переменных сколько есть степеней свободы, то их можно использовать в качестве обобщенных координат[5]. Положение вектора rk частицы k является функцией всех n обобщенных координат и времени,[6][7][8][5]

и обобщенные координаты можно рассматривать как параметры, связанные со связями.

Соответствующие производные по времени от q называются обобщенными скоростями,

(каждая точка обозначает одну производную по времени). Вектор скорости vk является полной производной rk по времени

и зависит от обобщенных скоростей и координат. Поскольку мы вольны указать начальные значения обобщенных координат и скоростей отдельно, то обобщенные координаты qj и скорости dqj/dt рассматриваются как независимые переменные.

Неголономных связи

Механическая система может включать в себя ограничения на обобщенные координаты и их производные. Ограничения этого типа известны как неголономных. Неголономные связи первого порядка имеют вид

Примером таких связей являются катящееся колесо или режущая кромка ножа, что ограничивает направление вектора скорости. Неголономные связи могут включать производные высоких порядков, таких как обобщенные ускорения.

Физические величины в обобщенных координатах

Кинетическая энергия

Полная кинетическая энергия системы — это энергия движения системы, определяется как[9]

в которой · обозначает скалярное произведение. Кинетическая энергия является функцией только скоростей vk, а не координат rk. Напротив важное наблюдение[10]

показывает, что кинетическая энергия является в общем случае функцией обобщенных скоростей, координат и времени, если связи также меняются со временем, так что T = T(q, dq/dt, t).

В случае, если связи не зависят от времени, тогда все частные производные по времени равны нулю, а кинетическая энергия не имеет зависимости от времени и является однородной функцией степени 2 обобщенных скоростей;

Ещё в этом случае, это выражение эквивалентно квадрату элемента длины траектории для частицы k,

делённому на квадрат дифференциала времени, dt2, чтобы получить квадрат скорости частицы k. Таким образом, для времененезависимых связей достаточно знать элемент длины, чтобы быстро получить кинетическую энергию частицы и, следовательно, Лагранжиан.[11]

Часто используемые элементы длины в 2d — полярные координаты (р, θ),

в 3d цилиндрические координаты (р, θ, Z с),

в 3d сферических координатах (р, θ, φ),

Обобщенный импульс

Обобщенный импульс «канонически сопряженный» координате qi определяется

Если Лагранжиан L никак не зависят от некоторых координат qi, тогда из уравнения Эйлера-Лагранжа получается, что соответствующий обобщенный импульс будет сохраняться, потому что её производная по времени равна нулю, поэтому импульс должен быть константой движения;

Примеры

Простой маятник

Динамическая модель простого маятника.

Взаимосвязь между использованием обобщенных координат и декартовых координат, чтобы охарактеризовать движение механической системы можно проиллюстрировать путем рассмотрения ограниченного движения математического маятника.[12][13]

Простой маятник состоит из массы M подвешенной к точке поворота так, что она вынуждена двигаться по окружности радиуса L. Положение массы определяется координатами вектора r=(x, y), измеренными в плоскости окружности, где y соответствует вертикальному направлению. Координаты x и y связаны уравнением окружности

что ограничивает движение M. Это уравнение также содержит связь для компонент скорости,

Теперь введем параметр θ, который определяет угловое положение M как отклонение от вертикального направления. Координаты x и y, определяются как

Применение θ для определения конфигурации этой системы позволяет избежать ограничений, заложенных в уравнение окружности.

Обратите внимание, что сила тяжести, действующая на тело массы M, задана в привычных декартовых координатах,

где g — ускорение силы тяжести.

Виртуальная работа силы тяжести действующей на тело массы M, во время его движения по траектории r дается

Вариации δr вычисляется в терминах координат x и y, или в терминах параметра θ,

Таким образом, виртуальная работа задается

Заметьте, что коэффициент δy — y-проекция приложенной силы. Аналогичным образом, коэффициент δθ известен как обобщенная сила вдоль обобщенной координаты θ, задаётся

Для полноты анализа рассмотрим кинетическую энергию T массы, используя скорость,

тогда,

Уравнения Лагранжа для маятника в терминах координат x и y заданы,

Отсюда получаем три уравнения

в тремя неизвестными, x, y и λ.

С помощью параметра θ, уравнения Лагранжа принимают вид

который записываются в виде,

или

Эта формулировка дает только одно уравнение, потому что есть только один параметр и отсутствует уравнение связи.

Это показывает, что параметр θ является обобщенной координаты, который можно использовать, как в декартовы координаты x и y, для анализа движения маятника.

Двойной маятник

Двойной маятник

Преимущества обобщенных координат становятся очевидными при анализе двойного маятника. Для двух масс mi, i=1, 2, пусть ri=(xi, yi), i=1, 2 нужно определить их траектории. Эти векторы удовлетворяют двум уравнениям связи,

Система уравнений Лагранжа двойного маятника состоит из шести уравнений с четырьмя декартовыми координатами xi, yi i=1, 2 и двух множителей Лагранжа λi, i=1, 2, которые возникают из двух уравнений связи.

Теперь введем обобщенные координаты θi i=1,2, определяющие угловое отклонение каждой массы двойного маятника от вертикального направления. В этом случае мы имеем

Сила тяжести, действующая на массы определяется по следующей формуле:

где g — ускорение силы тяжести. Следовательно, виртуальная работа силы тяжести на две массы, во вемя их движения вдоль траектории ri, i=1,2 дается

Вариации δri i=1, 2 задаются

Таким образом, виртуальная работа задается

и обобщенные силы

Длч вычисленияь кинетической энергию системы

Уравнения Лагранжа в неизвестных обобщенных координат θi i=1, 2, даются[14]

и

Использование обобщенных координат θi i=1, 2 представляет собой альтернативу формулировке динамики двойного маятника в декартовых координатах.

Обобщенные координаты и виртуальная работа

Принцип виртуальных перемещений гласит, что если система находится в статическом равновесии, виртуальная работа приложенных сил равна нулю для всех виртуальных перемещений системы из этого состояния, а именно, δW=0 для любой вариации δr.[15] При формулировке в терминах обобщенных координат, это эквивалентно требованию, что обобщенные силы для любого виртуального перемещения равны нулю, то есть Fi=0.

Пусть силы действующие на систему Fj, j=1, …, m приложены к точкам с декартовыми координатами rj, то j=1,…, m, тогда виртуальная работа, для виртуальнух перемещений из положения равновесия задается

где δrj, j=1, …, m обозначает виртуальные перемещения для каждой точки тела.

Теперь предположим, что каждое δrj зависит от обобщенных координат qi, i=1, …, n, тогда

и

n условий

— обобщенные силы, действующие на систему. Кэйн[16] показывает, что эти обобщенные силы можно переписать в терминах производных по времени,

где vj — скорость точки приложения силы Fj.

Для того, для виртуальная работа обращалась в ноль для произвольного виртуального перемещения, каждая из обобщенных сил должна быть равна нулю, то есть

См. также

Примечания

  1. Некоторые авторы приравнивают правую часть уравнения нулю для удобства.

Примечания

  1. Ginsberg , 2008, p. 397, § 7.2.1 Selection of generalized coordinates
  2. Farid M. L. Amirouche. §2.4: Generalized coordinates // Fundamentals of multibody dynamics: theory and applications. — Springer, 2006. — P. 46. — ISBN 0-8176-4236-6.
  3. Florian Scheck. §5.1 Manifolds of generalized coordinates // Mechanics: From Newton's Laws to Deterministic Chaos. — 5th. — Springer, 2010. — P. 286. — ISBN 3-642-05369-6.
  4. Goldstein 1980, p. 12
  5. 1 2 Kibble & Berkshire 2004, p. 232
  6. Torby 1984, p. 260
  7. Goldstein 1980, p. 13
  8. Hand & Finch 2008, p. 15
  9. Torby 1984, p. 269
  10. Goldstein 1980, p. 25
  11. Landau & Lifshitz 1976, p. 8
  12. Greenwood, Donald T. (1987).
  13. Richard Fitzpatrick, Newtonian Dynamics, http://farside.ph.utexas.edu/teaching/336k/Newton/Newtonhtml.html.
  14. Eric W. Weisstein, Double Pendulum, scienceworld.wolfram.com. 2007
  15. Torby, Bruce (1984).
  16. T. R. Kane and D. A. Levinson, Dynamics: theory and applications, McGraw-Hill, New York, 1985

Библиография использованных источников