Функционал

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Функциона́л — это отображение, заданное на произвольном множестве и имеющее числовую область значений: обычно множество вещественных чисел \R или комплексных чисел \mathbb{C}[1].

Определения[править | править вики-текст]

Область определения функционала может быть любым множеством. Если область определения является топологическим пространством, можно определить непрерывный функционал; если область определения является линейным пространством над \R или над \mathbb{C}, можно определить линейный функционал; если область определения является упорядоченным множеством, можно определить монотонный функционал.

Функционал, заданный на топологическом пространстве X, называется непрерывным, если он непрерывен как отображение в топологическое пространство \R или \mathbb{C}.

Функционал, заданный на топологическом пространстве X, называется непрерывным в точке x \in X, если он непрерывен в этой точке как отображение в топологическое пространство \R или \mathbb{C}.

В более широком смысле функционалом называется любое отображение из произвольного множества в произвольное (не обязательно числовое) кольцо.

Функционал, заданный на линейном пространстве, и сохраняющий сложение и умножение на константу, называется линейным функционалом. (Отображение линейного пространства в линейное пространство называют оператором).

Пожалуй, самый простой функционал — проекция - (сопоставление вектору одной из его компонент или координат).

Довольно часто в роли линейного пространства выступает то или иное пространство функций (непрерывные функции на отрезке, интегрируемые функции на плоскости и т.д.). Поэтому в прикладных областях под функционалом часто понимают функцию от функций, отображение, переводящее функцию в число (действительное или комплексное).

Функционал на линейном пространстве называется положительно определённым, если его значение неотрицательно и равно нулю только в нуле.

Отображение, переводящее вектор в его норму, является выпуклым положительно определённым функционалом, это один из самых распространённых функционалов. В физике часто используется действие — тоже функционал.

Задачи оптимизации формулируются на языке функционалов: найти решение (уравнения, системы уравнений, системы ограничений, системы неравенств, системы включений и т. п.), доставляющее экстремум (минимум или максимум) заданному функционалу. Функционалы также рассматриваются в вариационном анализе.

Функционал в линейном пространстве[править | править вики-текст]

Позднее от понятия традиционного функционала отделилось понятие функционала в линейном пространстве, как функции, отображающей элементы линейного пространства в его пространство скаляров. Зачастую (например, когда пространство функций является линейным пространством) эти две разновидности понятия «функционал» совпадают, в то же время они не тождественны и не поглощают друг друга.

Особенно важной разновидностью функционалов являются линейные функционалы.

Примеры[править | править вики-текст]

  • норма функции
  • значение функции в фиксированной точке
  • максимум или минимум функции на отрезке
  • величина интеграла от функции
  • длина графика вещественной функции вещественной переменной
  • длина кривой, параметрически заданной векторной функцией вещественного аргумента (длина пути)
  • площадь поверхности, параметрически заданной векторной функцией двух вещественных аргументов
  • скалярное произведение на фиксированный вектор
  • действие в механике
  • функционал энергии

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Математическая Энциклопедия, 1984

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]