Гиперкубические соты

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Square tiling uniform coloring 1.png
Правильная квадратная мозаика.
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
1 color
Partial cubic honeycomb.png
Кубические соты[en]* в их регулярной форме.
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
1 color
Square tiling uniform coloring 7.png
Шахматная квадратная мозаика
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
2 цвета
Bicolor cubic honeycomb.png
Шахматные кубические соты[en]*.
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
2 цвета
Square tiling uniform coloring 8.png
Растянутая квадратная мозаика
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
3 цвета
Runcinated cubic honeycomb.png
Растянутые кубические соты
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
4 цвета
Square tiling uniform coloring 9.png
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node 1.png
4 цвета
Cubic 8-color honeycomb.png
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node 1.png
8 цветов

В геометрии гиперкубические соты — это семейство правильных сот (замощений) в пространстве размерности n с символами Шлефли {4,3...3,4}, имеющих симметрию группы Коксетера Rn (или B~n-1) для n>=3.

Соты строятся из 4 n-мерных гиперкубов на каждой (n-2)-мерной грани. Вершинной фигурой является гипероктаэдр {3...3,4}.

Гиперкубические соты являются самодвойственными.

Коксетер, Гарольд назвал это семейство δn+1 (для n-мерных сот).

Классы построения Визоффа по размерности[править | править код]

Имеется два основных вида гиперкубических сот, правильная форма с идентичными фасетами гиперкубов и полуправильная с чередующимися фасетами, наподобие шахматной доски.

Третья форма образуется путём операции растяжения, применённой к правильной форме. В результате растяжения создаются фасеты на месте всех элементов меньшей размерности. Например, растянутые кубические соты имеют кубические ячейки с центрами исходных кубов, на исходных фасетах, на исходных рёбрах и на исходных вершинах, создавая тем самым ячейки 4 цветов вокруг каждой вершины с соотношением 1:3:3:1.

Прямоугольные соты — это семейство топологически эквивалентных кубическим сот, но имеющих меньшую степень симметрии. В этих сотах каждое из трёх направлений может иметь отличную от других длину. Фасеты являются гиперпрямоугольниками (на плоскости это прямоугольники, а в трёхмерном пространстве — прямоугольные параллелепипеды).

δn Название Символы Шлефли Диаграммы Коксетера — Дынкина
Прямоугольные
{∞}n
(2m цветов, m<n)
Правильные
(Растянутые)
{4,3n-1,4}
(1 цвет, n цветов)
Шахматные
{4,3n-4,31,1}
(2 цвета)
δ2 Апейрогон {∞} CDel labelinfin.pngCDel branch 10.png    
δ3 Квадратная мозаика {∞}2
{4,4}
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
δ4 Кубические соты[en]* {∞}3
{4,3,4}
{4,31,1}
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
δ5 Кубические 4-мерные соты[en] {∞}4
{4,32,4}
{4,3,31,1}
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
δ6 Кубические 5-мерные соты[en] {∞}5
{4,33,4}
{4,32,31,1}
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
δ7 Кубические 6-мерные соты[en] {∞}6
{4,34,4}
{4,33,31,1}
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
δ8 Кубические 7-мерные соты[en] {∞}7
{4,35,4}
{4,34,31,1}
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
δ9 Кубические 8-мерные соты[en] {∞}8
{4,36,4}
{4,35,31,1}
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
 
δn Кубические n-мерные соты {∞}n
{4,3n-3,4}
{4,3n-4,31,1}
...

См. также[править | править код]

Литература[править | править код]

  • H.S.M. Coxeter. Regular Polytopes. — 3rd. — Dover edition, 1973. — ISBN 0-486-61480-8.
    1. стр. 122–123, 1973. (Решётка гиперкубов γn образует кубические соты δn+1)
    2. стр. 154–156: Частично усечённые или альтернированные, представленные префиксом h: h{4,4}={4,4}; h{4,3,4}={31,1,4}, h{4,3,3,4}={3,3,4,3}
    3. стр. 296, Таблица II: Правильные соты, δn+1