Степенная функция
Степенна́я фу́нкция — функция , где (показатель степени) — некоторое вещественное число[1][2]. К степенным часто относят и функцию вида , где — некоторый (ненулевой) коэффициент[3]. Существует также комплексное обобщение степенной функции .
Степенная функция является частным случаем многочлена. На практике показатель степени почти всегда является целым или рациональным числом.
Вещественная функция[править | править код]
Область определения[править | править код]
Для целых положительных показателей степенную функцию можно рассматривать на всей числовой прямой, тогда как для отрицательных , функция не определена в нуле (нуль является её особой точкой)[4].
Для рациональных область определения зависит от чётности и от знака так как :
- Если нечётно и , то определён на всей числовой прямой.
- Если нечётно и , то определён на всей числовой прямой, кроме нуля.
- Если чётно и , то определён при неотрицательных
- Если чётно и , то определён при положительных
Для вещественного показателя степенная функция , вообще говоря, определена только при Если то функция определена и в нуле[4].
Целочисленный показатель степени[править | править код]
Графики степенной функции при целочисленном показателе :
При нечётном графики центрально-симметричны относительно начала координат, в котором имеет точку перегиба. При чётном степенная функция чётна: её график симметричен относительно оси ординат[5].
Графики степенной функции при натуральном показателе называются параболами порядка . При чётном функция всюду неотрицательна (см. графики). При получается функция , называемая линейной функцией или прямой пропорциональной зависимостью[3][5].
Графики функций вида , где — натуральное число, называются гиперболами порядка . При нечётном оси координат являются асимптотами гипербол. При чётном асимптотами являются ось абсцисс и положительное направление оси ординат (см. графики)[6]. При показателе получается функция , называемая обратной пропорциональной зависимостью[3][5].
При функция вырождается в константу:
Рациональный показатель степени[править | править код]
Возведение в рациональную степень определяется формулой:
Если , то функция представляет собой арифметический корень степени :
Пример: из третьего закона Кеплера непосредственно вытекает, что период обращения планеты вокруг Солнца связан с большой полуосью её орбиты соотношением: (полукубическая парабола).
Свойства[править | править код]
Монотонность[править | править код]
В интервале функция монотонно возрастает при и монотонно убывает при Значения функции в этом интервале положительны[3].
Аналитические свойства[править | править код]
Функция непрерывна и неограниченно дифференцируема во всех точках, в окрестности которых она определена[4].
Ноль, вообще говоря, является особой точкой. Так, если , то -я производная в нуле не определена. Например, функция определена в нуле и в его правой окрестности, но её производная в нуле не определена.
- Если , то
- При получаем:
Таблица значений малых степеней[править | править код]
n | n2 | n3 | n4 | n5 | n6 | n7 | n8 | n9 | n10 |
---|---|---|---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
3 | 9 | 27 | 81 | 243 | 729 | 2187 | 6561 | 19 683 | 59 049 |
4 | 16 | 64 | 256 | 1024 | 4096 | 16 384 | 65 536 | 262 144 | 1 048 576 |
5 | 25 | 125 | 625 | 3125 | 15 625 | 78 125 | 390 625 | 1 953 125 | 9 765 625 |
6 | 36 | 216 | 1296 | 7776 | 46 656 | 279 936 | 1 679 616 | 10 077 696 | 60 466 176 |
7 | 49 | 343 | 2401 | 16 807 | 117 649 | 823 543 | 5 764 801 | 40 353 607 | 282 475 249 |
8 | 64 | 512 | 4096 | 32 768 | 262 144 | 2 097 152 | 16 777 216 | 134 217 728 | 1 073 741 824 |
9 | 81 | 729 | 6561 | 59 049 | 531 441 | 4 782 969 | 43 046 721 | 387 420 489 | 3 486 784 401 |
10 | 100 | 1000 | 10 000 | 100 000 | 1 000 000 | 10 000 000 | 100 000 000 | 1 000 000 000 | 10 000 000 000 |
Комплексная функция[править | править код]
Степенная функция комплексного переменного в общем виде определяется формулой[7]:
Здесь показатель степени — некоторое комплексное число. Значение функции, соответствующее главному значению логарифма, называется главным значением степени. Например, значение равно где — произвольное целое, а его главное значение есть
Комплексная степенная функция обладает значительными отличиями от своего вещественного аналога. В силу многозначности комплексного логарифма она, вообще говоря, также имеет бесконечно много значений. Однако два практически важных случая рассматриваются отдельно.
- При натуральном показателе степени функция однозначна и n-листна[8].
- Если показатель степени — положительное рациональное число, то есть (несократимая) дробь , то у функции будет различных значений[7].
См. также[править | править код]
Примечания[править | править код]
- ↑ Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том I, §48: Важнейшие классы функций..
- ↑ Выгодский М. Я. Справочник по элементарной математике. М.: Наука,1978. Стр. 312.
- ↑ 1 2 3 4 Математическая энциклопедия, 1985.
- ↑ 1 2 3 4 БРЭ.
- ↑ 1 2 3 Математический энциклопедический словарь, 1988.
- ↑ Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — изд. 13-е. — М.: Наука, 1985. — С. 171—172. — 544 с.
- ↑ 1 2 Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том II, стр. 526-527..
- ↑ Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. — М.: Наука, 1967. — С. 88. — 304 с.
Литература[править | править код]
- Битюцков В. И. Степенная функция // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1985. — Т. 5. — С. 208—209. — 1248 с.
- Степенная функция // Математический энциклопедический словарь. — М.: Советская энциклопедия, 1988. — С. 564—565. — 847 с.
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, в трёх томах. — изд. 6-е. — М.: Наука, 1966.
Ссылки[править | править код]
- Степенная функция // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.