Троичный компьютер

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Троичный компьютер — компьютер, построенный на двоичных и троичных логических элементах и узлах [1], работающий в двоичной и троичной системе счисления по законам двоичной и троичной логики с применением двоичных и троичных алгоритмов.

История[править | править вики-текст]

Леонардо Пизанский (Фибоначчи)
Витраж с изображением машины Томаса Фаулера в Храме святого Михаила (St. Michael’s Church in Torrington, Devon)[6]
Первая опытная троичная ЭВМ «Сетунь»
  • 1958 г., Н. П. Брусенцов построил в МГУ первую опытную электронную троичную ЭВМ (компьютер) «Сетунь»[10] на ячейках из ферритдиодных магнитных усилителей переменного тока[11], работавших в двухбитном троичном коде, четвёртое состояние двух битов не использовалось. Для передачи данных использовалась однопроводная система[12]. В США в то время тоже рассматривали преимущества и недостатки троичного компьютера и после проведённых теоретических исследований строить троичный компьютер не стали.
Первая серийная троичная ЭВМ «Сетунь»
  • 1959 г., под руководством Н. П. Брусенцова (ВЦ МГУ) разработана первая серийная троичная ЭВМ «Сетунь». С 1962 г. по 1964 г. Казанским заводом математических машин было произведено 46 ЭВМ «Сетунь»[13].
ЭВМ «Сетунь-70»
Трёхуровневая 3-тритная цифровая компьютерная система TCA2[14]
  • 2008 г., (14 марта — 24 мая), Джефф Коннелли (англ. Jeff Connelly), Кираг Патель (англ. Chirag Patel) и Антонио Чавез (англ. Antonio Chavez) при поддержке профессора Филлипа Нико (англ. Phillip Nico) (California Polytechnic State University of San Luis Obispo, San Luis Obispo, Калифорния, США) построили трёхтритную цифровую компьютерную систему TCA2, версия v2.0[15], в трёхуровневой (3-Level CodedTernary, 3L CT, «однопроводной») системе троичных логических элементов на 1484-х интегральных транзисторах.

Преимущества троичных ЭВМ (компьютеров)[править | править вики-текст]

Троичные ЭВМ (компьютеры) обладают рядом преимуществ по сравнению с двоичными ЭВМ (компьютерами).

При сложении тритов в троичных полусумматорах и в троичных сумматорах количество сложений в раза меньше, чем при сложении битов в двоичных полусумматорах и в двоичных сумматорах, и, следовательно, быстродействие при сложении в 1,58.. раза (на 58%) больше.

При применении симметричной троичной системы счисления и сложение и вычитание производится в одних и тех же двухаргументных (двухоперандных) полусумматорах-полувычитателях или полных трёхаргументных (трёхоперандных) сумматорах-вычитателях без преобразования отрицательных чисел в дополнительные коды, то есть ещё немного быстрее, чем в двоичных полусумматорах и в двоичных полных сумматорах, в которых для вычитания используется сложение с двумя преобразованиями отрицательных чисел, сначала в первое дополнение, а затем во второе дополнение, т.е. два дополнительных действия ("инверсия" и "+1") на каждое отрицательное слагаемое.

Сложение сильно тормозят переносы, которые в двоичном сумматоре возникают в 4-х случаях из 8-ми (в 50% случаев), а в троичном симметричном сумматоре в 8-ми случаях из 27-ми (в 29,6...% случаев), что ещё немного увеличивает быстродействие.

3-х битная троичная физическая система кодирования и передачи данных 3B BCT имеет на 15,3% большее быстродействие, чем обычная двоичная система кодирования и передачи данных[16], что ещё немного увеличивает быстродействие.

3-х битная троичная физическая система кодирования троичных данных 3B BCT избыточна (используются только 3 кода из 8-ми), что позволяет обнаружить ошибки и повысить надёжность изделия.

В сумме, приблизительно в 2 раза большее увеличение быстродействия в изделиях долговременного применения может окупить приблизительно в 1,5 раза большие единовременные затраты на аппаратную часть. В некоторых изделиях одноразового применения увеличение быстродействия и надёжности может перевесить увеличение затрат на аппаратную часть.

Кроме этого, вместо 4-х унарных, 16-ти бинарных и 256-ти тринарных двоичных логических функций в троичных эвм появляются 27-мь унарных, 19 683-и бинарных и 7 625 597 484 987-мь тринарных (трёхоперандных) троичных логических функций, которые намного мощнее бинарных. Увеличение "логической мощности" в неизвестное число раз, может в 19 683/16 = 1 230 раз, а может в 7 625 597 484 987/256 = 29 787 490 175 раз (нет методики сравнения "логических мощностей"), но намного, может увеличить "логическую мощность" даже медленнодействующих физических систем кодирования и передачи данных, в том числе и трёхуровневой (3-Level CodedTernary (3L CT), "однопроводной").

Может быть, что на первых порах пакеты прикладных программ с применением более мощной, чем двоичная логика, троичной логики, особенно в задачах имеющих троичность (обработка RGB-изображений, трёхкоординатные (объёмные) x,y,z-задачи и др.) позволит существенно сократить время решения многих троичных задач на обычных двоичных компьютерах (двоичная эмуляция троичных эвм и троичной логики на двоичных компьютерах).

Удельное натуральнологарифмическое число кодов (чисел) (плотность записи информации) описывается уравнением , где  — основание системы счисления[17]. Из уравнения следует, что наибольшей плотностью записи информации обладает система счисления с основанием равным основанию натуральных логарифмов, то есть равным числу Эйлера (е=2,71…). Эту задачу решали ещё во времена Непера при выборе основания для логарифмических таблиц. Из целочисленных систем счисления наибольшей плотностью записи информации обладает троичная система счисления.


Троичная логика целиком включает в себя двоичную логику, как центральное подмножество, поэтому троичные ЭВМ (компьютеры) могут делать почти всё, что делают двоичные ЭВМ (компьютеры), плюс возможности троичной логики.


Элементы троичных ЭВМ (компьютеров)[править | править вики-текст]

Известны троичные элементы следующих видов:

Импульсные[править | править вики-текст]

[18] [19]

Потенциальные[править | править вики-текст]

Трёхуровневые[править | править вики-текст]

  • В трёхуровневых потенциальных линиях передачи цифровых данных (3-Level CodedTernary, 3L CT, «однопроводных») трём устойчивым состояниям соответствуют три уровня напряжения (положительное, нулевое, отрицательное), (высокое, среднее, низкое)[15][20][21]. Имеют меньшее итоговое быстродействие, чем обычная двоичная система [22].

Амплитуда наибольшего сигнала помехи равной помехоустойчивости с двухуровневыми элементами не более (+/-)Uп/6 (16,7% от Uп), при делении всего диапазона напряжений на три равные части и номинальных напряжениях сигналов в срединах поддиапазонов.

Недостатки:
1. необходимость, для равной помехоустойчивости с обычной двоичной системой, увеличения размаха сигнала в 2 раза,
2. неодинаковость среднего состояния с верхним и нижним состояниями,
3. неодинаковость амплитуд переходов из крайних состояний в среднее (одинарная амплитуда) и переходов из одного крайнего состояния в другое крайнее состояние (двойная амплитуда).

Двухуровневые[править | править вики-текст]

Амплитуда наибольшего сигнала помехи не более (+/-)Uп/4 (25% от Uп), при делении всего диапазона напряжений на две равные части и номинальных напряжениях сигналов в срединах поддиапазонов.

  • Двухуровневые, потенциальные (2-Level BinaryCodedTernary, 2L BCT), в которых логические элементы (инверторы) имеют два устойчивых состояния с двумя уровнями напряжения (высокое, низкое), а троичность работы достигается системой обратных связей (троичный триггер)[23]. Амплитуда сигнала помехи до Uп/2 (до 50 % от Uп).

Двухбитные

Недостатки:

1. два провода на один разряд.

Трёхбитные

    • Двухуровневые трёхбитные (2-Level 3-Bit BinaryCodedTernary, 2L 3B BCT, «трёхпроводные»)[25]. По скорости равны троичным двухуровневым двухбитным триггерам. По сравнению с обычными двоичными RS-триггерами увеличивают объём хранимых и передаваемых данных в 1,5 раза на один разряд, но и аппаратные затраты тоже увеличиваются. Быстродействие выше, чем в обычной двоичной системе, но ниже, чем в четверичной четырёхбитной системе, но аппаратные затраты растут меньше, чем в четверичной четырёхбитной системе. Из-за избыточности трёхбитного кода появляется возможность обнаружения одиночных однобитных ошибок на аппаратном уровне, что может оказаться полезным в устройствах повышенной надёжности и может найти применение в устройствах, в которых надёжность и быстродействие являются более значимыми параметрами, чем аппаратные затраты.

Недостатки:

1. три провода на один разряд.

Смешанные[править | править вики-текст]

  • Смешанные, в которых вход данных трёхуровневый по одной линии и земле, а выход данных двухуровневый по трём линиям и земле.[26]

Узлы троичных ЭВМ[править | править вики-текст]

Полный троичный тринарный (трёхоперандный) одноразрядный сумматор является неполной троичной логической тринарной (трёхоперандной) функцией.

Простейшие троичные процессоры на троичных регистрах сдвига, выполняющие операции умножения и деления на и , прибавления и вычитания и , умножения и деления на и , прибавления и вычитания и описаны в [источник не указан 2356 дней].

Будущее[править | править вики-текст]

Дональд Кнут отмечал, что из-за массового производства двоичных компонентов для компьютеров, троичные компьютеры занимают очень малое место в истории вычислительной техники. Однако троичная логика элегантнее и эффективнее двоичной и в будущем, возможно, вновь вернутся к её разработке[27].

В работе [Jin, He, Lü 2005][28] возможным путём считают комбинацию оптического компьютера с троичной логической системой. По мнению авторов работы, троичный компьютер, использующий волоконную оптику, должен использовать три величины: 0 или ВЫКЛЮЧЕНО, 1 или НИЗКИЙ, 2 или ВЫСОКИЙ.

Будущий потенциал троичной вычислительной техники был также отмечен такой компанией как Hypres, которая активно участвует в троичной вычислительной технике. IBM в своих публикациях также сообщает о троичной вычислительной технике, но активно не участвует в ней.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. D. C. Rine (ed.), Computer Science and Multiple-Valued Logic. Theory and Applications. Elsevier, 1977, 548p.
  2. Славянская «золотая» группа. Mузей Гармонии и Золотого Сечения.
  3. «Liber аbaci» Леонардо Фибоначчи. Наталья Карпушина. Задача 4. Вариант 1
  4. «Троичный принцип» Николая Брусенцова. Mузей Гармонии и Золотого Сечения
  5. «Liber аbaci» Леонардо Фибоначчи. Наталья Карпушина. Задача 4. Вариант 2
  6. The ternary calculating machine of Thomas Fowler (англ.)
  7. Троичная механическая счётная машина Томаса Фоулера.
  8. Сайт Томаса Фоулера
  9. Раздел 5.2 Choice of binary system
  10. Троичные ЭВМ «Сетунь» и «Сетунь 70». Н. П. Брусенцов, Рамиль Альварес Хосе
  11. Брусенцов Н. П. Троичные ЭВМ "Сетунь" и "Сетунь 70" // Международная конференция SORUCOM. — 2006.
  12. Брусенцов Н. П. Электромагнитные цифровые устройства с однопроводной передачей трёхзначных сигналов // Магнитные элементы автоматики и вычислительной техники. XIV Всесоюзное совещание (Москва, сентябрь 1972 г.). — Москва: Наука, 1972. — С. 242-244.
  13. Забытая история советских ЭВМ. Владимир Сосновский, Антон Орлов
  14. Trinary Computer
  15. 1 2 Ternary Computing Testbed 3-Trit Computer Architecture. Jeff Connelly, Computer Engineering Department, August 29th, 2008, with contributions from Chirag Patel and Antonio Chavez. Advised by Professor Phillip Nico. California Polytechnic State University of San Luis Obispo
  16. Куликов А. С. Быстродействие физических систем передачи данных
  17. А. С. Куликов. Экономичность систем счисления с показательной весовой функцией
  18. http://emag.iis.ru/arc/infosoc/emag.nsf/f0c3e40261f64c5b432567c80065e37d/72de119fdb628501c3257193004180c8?OpenDocument МГУ — не конкурент, а колыбель науки или о том, что в информационном обществе нельзя без Аристотеля. Н. П. Брусенцов. О «Сетуни», её разработках, производстве
  19. http://www.trinitas.ru/rus/doc/0226/002a/02260054.htm АКАДЕМИЯ ТРИНИТАРИЗМА. Дмитрий Румянцев. Долой биты! (Интервью с конструктором троичной ЭВМ)
  20. Троичная цифровая техника. Перспектива и современность. 28.10.05 Александр Кушнеров, Университет им. Бен-Гуриона, Беэр-Шева, Израиль.
  21. http://www.trinary.cc/Tutorial/Tutorial.htm
  22. Куликов А.С. Быстродействие физических систем передачи данных
  23. Троичные триггеры
  24. http://trinary.ru/materials/ternary-binary-based-trigger Троичные триггеры на двоичных логических элементах
  25. Быстродействие физических систем передачи данных
  26. Trinary.cc
  27. D.E. Knuth, The Art of Computer Programming — Volume 2: Seminumerical Algorithms, pp. 190—192. Addison-Wesley, 2nd ed., 1980. ISBN 0-201-03822-6.
  28. Ternary Optical Computer

Ссылки[править | править вики-текст]