Вписанно-описанный четырёхугольник

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Поризм Понселе для вписанно-описанных четырёхугольников ABCD и EFGH

Вписанно-описанный четырёхугольник — это выпуклый четырёхугольник, который имеет как вписанную окружность, так и описанную окружность. Из определения следует, что вписанно-описанные четырёхугольники имеют все свойства как описанных четырёхугольников, так и вписанных четырёхугольников. Другие названия этих четырёхугольников: хордо-касающийся четырёхугольник[1] и бицентрический четырёхугольник. Их также называют двух-окружностными четырёхугольниками[2].

Если две окружности, одна внутри другой, являются вписанной окружностью и описанной окружностью некоторого четырёхугольника, то любая точка на описанной окружности является вершиной какого-то (возможно, другого) вписанно-описанного четырёхугольника, имеющего те же самые вписанные и описанные окружности[3]. Это следствие поризма Понселе, который доказал французский математик Жан-Виктор Понселе (1788–1867).

Специальные случаи

Прямоугольный дельтоид?!

Примерами вписанно-описанных четырёхугольников являются квадраты, прямоугольные дельтоиды?! и равнобокие описанные трапеции[англ.].

Описание

Вписанно-описанный четырёхугольник ABCD и его контактный четырёхугольник WXYZ

Выпуклый четырёхугольник ABCD со сторонами a, b, c, d является бицентрическим тогда и только тогда, когда противоположные стороны удовлетворяют теореме Пито для описанных четырёхугольников и свойству вписанных четырёхугольников, что противоположные углы в сумме дают 180 градусов, то есть,

Три других описания касаются точек, в которых вписанная окружность в описанном четырёхугольнике касается сторон. Если вписанная окружность касается сторон AB, BC, CD и DA в точках W, X, Y и Z соответственно, то описанный четырёхугольник ABCD является также и описанным в том и только в том случае, когда выполняется любое из следующих трёх условий[4]:

  • Отрезок WY перпендикулярен XZ

Первое из этих трёх условий означает, что контактный четырёхугольник WXYZ является ортодиагональным четырёхугольником.

Если E, F, G, H являются серединами WX, XY, YZ, ZW соответственно, то описанный четырёхугольник ABCD также является описанным тогда и только тогда, когда четырёхугольник EFGH является прямоугольником[4].

Согласно другому описанию, если I является центром вписанной окружности описанного четырёхугольника, у которого продолжения противоположных сторон пересекаются в точках J и K, то четырёхугольник является описанным тогда и только тогда, когда JIK является прямым углом[4].

Ещё одним необходимым и достаточным условием является то, что описанный четырёхугольник ABCD является описанным тогда и только тогда, когда его прямая Гаусса перпендикулярна прямой Гаусса его контактного четырёхугольника WXYZ. (Прямая Гаусса четырёхугольника определяется средними точками его диагоналей.)[4]

Построение

Вписанно-описанный четырёхугольник ABCD с контактным четырёхугольником WXYZ. Анимацию смотрите здесь

Имеется простой метод построения бицентрического четырёхугольника:

Построение начинается с вписанной окружности Cr с центром I и радиусом r, затем рисуем две перпендикулярные друг другу хорды WY и XZ во вписанной окружности Cr. На концах хорд проводим касательные a, b, c и d к вписанной окружности. Они пересекаются в точках A, B, C and D, которые являются вершинами вписанно-описанного четырёхугольника[5]. Чтобы нарисовать описанную окружность, рисуем два перпендикулярных бисектора[англ.][6] p1 и p2 на сторонах вписанно-описанного четырёхугольника a и b соответственно. Перпендикулярные бисекторы p1 и p2 пересекаются в центре O описанной окружности CR на расстоянии x от центра I вписанной окружности Cr. Описанная окружность может быть описана вокруг центра O.

Верность этого построения вытекает из факта, что в описанном четырёхугольнике ABCD контактный четырёхугольник WXYZ имеет перпендикулярные диагонали тогда и только тогда, когда описанный четырёхугольник является также вписанным.

Площадь

Формулы в терминах четырёх величин

Площадь K вписанно-описанного четырёхугольника можно выразить в терминах четырёх величин четырёхугольника несколькими способами. Если a, b, c и d являются сторонами, то площадь задаётся формулой[3][7][8][9][10]

Это частный случай формулы Брахмагупты. Формулу можно получить и прямо из тригонометрической формулы площади описанного четырёхугольника. Заметим, что обратное не выполняется — некоторые четырёхугольники, не являющиеся бицентрическими также имеют площадь [11]. Примером такого четырёхугольника служит прямоугольник (с разными сторонами, не квадрат).

Площадь может быть выражена в терминах отрезков от вершины до точки касания (для краткости будем называть эти длины касательными длинами) e, f, g, h[12]

Формула площади вписанно-описанного четырёхугольника ABCD с центром вписанной окружности I[8]

Если вписанно-описанный четырёхугольник имеет касательные хорды k, l и диагонали p, q, тогда он имеет площадь[13]

Если k, l являются касательными хордами и m, n являются бимедианами четырёхугольника, тогда площадь может вычислена с помощью формулы[8].

Формула не может быть использована, если четырёхугольник является прямоугольным дельтоидом?!, поскольку в этом случае знаменатель равен нулю.

Если M и N являются серединами диагоналей, а E и F являются точками пересечения продолжения сторон, то площадь вписанно-описанного четырёхугольника задаётся формулой

где I является центром вписанной окружности[8].

Формулы в терминах трёх величин

Площадь вписанно-описанного четырёхугольника можно выразить в терминах двух противоположных сторон и угла θ между диагоналями согласно формуле[8]

В терминах двух смежных углов и радиуса r вписанной окружности площадь площадь задаётся формулой [8]

Площадь задаётся в терминах радиуса R описанной окружности и радиуса r вписанной окружности как

где θ является любым из углов между диагоналями[14].

Если M и N являются средними точками диагоналей, а E и F являются точками пересечения продолжений противоположных сторон, площадь можно выразить формулой

где Q является основанием перпендикуляра на прямую EF из центра вписанной окружности[8].

Неравенства

Если r и R являются радиусом вписанной окружности и радиусом описанной окружности соответственно, тогда площадь K удовлетворяет неравенству[15]

Равенство получим только если четырёхугольник является квадратом.

Другим неравенством для площади будет[16]:p.39,#1203

где r и R являются радиусом вписанной окружности и радиусом описанной окружности соответственно.

Похожее неравенство, дающее более точную верхнюю границу для площади, чем предыдущее[14]

и равенство достигается тогда и только тогда, когда четырёхугольник является прямоугольным дельтоидом?!.

Кроме того, со сторонами a, b, c, d и полупериметром s:

[16]:p.39,#1203
[16]:p.39,#1203
[16]:p.39,#1203

Формулы углов

Если a, b, c и d являются длинами сторон AB, BC, CD и DA соответственно во вписанно-описанном четырёхугольнике ABCD, то его углы в вершинах можно вычислить с помощью тангенса[8]:

Если использовать те же обозначения, выполняются следующие формулы для синусов и косинусов[17]:

Угол θ между диагоналями можно вычислить из формулы[9].

Радиус вписанной окружности и радиус описанной окружности

Радиус вписанной окружности r вписанно-описанного четырёхугольника определяется сторонами a, b, c, d по формуле[3]

Радиус описанной окружности R является частным случаем формулы Парамешвары[3]

Радиус вписанной окружности можно выразить также в терминах последовательных касательных длин e, f, g, h согласно формуле[18].

Эти две формулы, фактически, являются необходимыми и достаточными условиями для описанного четырёхугольника с радиусом вписанной окружности r быть вписанным.

Четыре стороны a, b, c, d вписанно-описанного четырёхугольника являются решениями уравнения четвёртой степени[англ.]

где s является полупериметром, а r и R являются радиусом вписанной окружности и радиусом описанной окружности соответственно[19].

Если имеется вписанно-описанный четырёхугольник с радиусом вписанной окружности r, касательные длины которых равны e, f, g, h, то существует вписанно-описанный четырёхугольник с радиусом вписанной окружности rv, касательные длины которых равны , где v могут быть любым вещественным числом[20].

Вписанно-описанный четырёхугольник имеет больший радиус вписанной окружности, чем любой другой описанный четырёхугольник, имеющий те же длины сторон в той же последовательности[21].

Неравенства

Радиус описанной окружности R и радиус вписанной окружности r удовлетворяют неравенству

которое доказал Л. Фейеш Тот в 1948[22]. Неравенство превращается в равенство только если две окружности концентричны (центры совпадают). В этом случае четырёхугольник является квадратом. Неравенство можно доказать несколькими различными путями, один из путей использует двойное неравенство для площади выше.

Обобщением предыдущего неравенства является[2][23].

где неравенство превращается в равенство тогда и только тогда, когда четырёхугольник является квадратом[24].

Полупериметр s вписанно-описанного четырёхугольника удовлетворяет[25]

где r и R являются радиусом вписанной окружности и радиусом описанной окружности соответственно.

Более того,[16]:p.39,#1203

и

[16]:p.62,#1599

Расстояние между центром вписанной окружности и центром описанной окружностей

Вписанно-описанный четырёхугольник ABCD с центром вписанной окружности I и центром описанной окружности O

Теорема Фусса

Теорема Фусса даёт связь между радиусом вписанной окружности r, радиусом описанной окружности R и расстоянием x между центром вписанной окружности I и центром описанной окружности O, для любого бицентрического четырёхугольника. Связь задаётся формулой[1][10][26].

Или, эквивалентно,

Формулу вывел Николай Иванович Фусс (1755–1826) в 1792. Решая относительно x, получим

Теорема Фусса для вписанно-описанных четырёхугольников, которая является аналогом теоремы Эйлера для треугольников, утверждает, что если четырёхугольник бицентрический, то его две ассоциированных окружности связаны приведённой выше формулой. Фактически, обратное также выполняется — если даны две окружности (одна внутри другой) с радиусами R и r и расстояние x между их центрами удовлетворяет условию теоремы Фусса, существует выпуклый четырёхугольник, вписанный в одну из окружностей, а другая окружность будет вписана в четырёхугольник[27] (а тогда по теореме Понселе, существует бесконечно много ткаких четырёхугольников).

Если использовать факт, что в выражении теоремы Фусса, получим другим способом уже упомянутое неравенство Обобщением неравенства будет [28]

Тождество Карлица

Другая формула расстояния x между центрами вписанной окружности и описанной окружности принадлежит американсткому математику Леонарду Карлицу (1907–1999). Формула утверждает, что[29].

где r и R являются радиусом вписанной окружности и радиусом описанной окружности соответственно, и

где a, b, c, d являются сторонами вписанно-описанного четырёхугольника.

Неравенства для касательных длин и сторон

Для касательных длин e, f, g, h выполняются следующие неравенства[30]:

и

где r является радиусом вписанной окружности, R является радиусом описанной окружности, а x является расстоянием между центрами этих окружностей. Стороны a, b, c, d удовлетворяют неравенствам[28]

и

Другие свойства центра вписанной окружности

Центр описанной окружности, центр вписанной окружности и точка пересечения диагоналей во вписанно-описанном четырёхугольнике коллинеарны.[31]

Есть следующее равенство относительно четырёх расстояний между центром вписанной окружности I и вершинами бицентрического четырёхугольника ABCD:[32]

где r — радиус вписанной окружности.

Если точка P является пересечением диагоналей во вписанно-описанном четырёхугольнике ABCD с центром вписанной окружности I, то[33]

Есть неравенство для радиуса r вписанной окружности и радиуса описанной окружности R во вписанно-описанном четырёхугольнике ABCD[34]

где I является центром вписанной окружности.

Свойства диагоналей

Длины диагоналей во вписанно-описанном четырёхугольнике можно выразить терминах сторон или касательных длин. Эти формулы верны для вписанных четырёхугольников и описанных четырёхугольников соответственно.

Во вписанно-описанном четырёхугольнике с диагоналями p и q выполняется тождество[10]:

где r и R являются радиусом вписанной окружности и радиусом описанной окружности соответственно. Это тождество можно переписать как[14]

или, решив его как квадратное уравнение относительно произведения диагоналей, получим

Есть неравенство для произведения диагоналей p, q во вписанно-описанном четырёхугольнике[15]

где a, b, c, d — стороны. Неравенство доказал Мюррей С. Кламкин в 1967.

См. также

Примечания

  1. 1 2 Dörrie, 1965, с. 188–193.
  2. 1 2 Yun, 2008, с. 119-121.
  3. 1 2 3 4 Eric Weisstein, Bicentric Quadrilateral at MathWorld, [1], Accessed on 2011-08-13.
  4. 1 2 3 4 Josefsson, 2010, с. 165–173.
  5. Alsina, Nelsen, 2011, с. 125–126.
  6. Бисектор отрезка — это прямая, проходящая чрез его середину
  7. Josefsson, 2010, с. 129.
  8. 1 2 3 4 5 6 7 8 Josefsson, 2011, с. 155–164.
  9. 1 2 Durell, Robson, 2003, с. 28, 30.
  10. 1 2 3 Yiu, 1998, с. 158-164.
  11. Lord, 2012, с. 345-347.
  12. Josefsson, 2010, с. 128.
  13. Josefsson, 2010a, с. 129.
  14. 1 2 3 Josefsson, 2012, с. 237–241.
  15. 1 2 Alsina, Nelsen, 2009, с. 64–66.
  16. 1 2 3 4 5 6 Inequalities proposed in Crux Mathematicorum[англ.], 2007.[2]
  17. Josefsson, 2012, с. 79–82.
  18. Radic, Kaliman, Kadum, 2007, с. 41.
  19. Pop, 2009, с. 754.
  20. Radic, 2005, с. 9-10.
  21. Hess, 2014, с. 392–393.
  22. Radic, 2005.
  23. Shattuck, 2018, с. 141.
  24. Josefsson, 2012, с. 81.
  25. Radic, 2005, с. 13.
  26. Salazar, 2006, с. 306–307.
  27. Byerly, 1909, с. 123–128.
  28. 1 2 Radic, 2005, с. 5.
  29. Calin, 2010, с. 153–158.
  30. Radic, 2005, с. 3.
  31. Bogomolny, Alex, Collinearity in Bicentric Quadrilaterals [3], 2004.
  32. Juan Carlos Salazar, Fuss Theorem for Bicentric Quadrilateral, 2003, [4].
  33. Crux Mathematicorum[англ.] 34 (2008) no 4, p. 242.
  34. Post at Art of Problem Solving, 2009

Литература

  • Heinrich Dörrie. 100 Great Problems of Elementary Mathematics: Their History and Solutions. — New York: Dover, 1965. — С. 188–193. — ISBN 978-0-486-61348-2.
  • Eric W. Weisstein. Poncelet Transverse // MathWorld – A Wolfram Web Resource,.
  • Martin Josefsson. Characterizations of Bicentric Quadrilaterals // Forum Geometricorum. — 2010. — Т. 10. — С. 165–173.
  • Martin Josefsson. Calculations concerning the tangent lengths and tangency chords of a tangential quadrilateral // Forum Geometricorum. — 2010a. — Т. 10. — С. 119–130.
  • Martin Josefsson. The Area of a Bicentric Quadrilateral // Forum Geometricorum. — 2011. — Т. 11. — С. 155–164.
  • Martin Josefsson. A New Proof of Yun’s Inequality for Bicentric Quadrilaterals // Forum Geometricorum. — 2012. — Т. 12. — С. 79–82.
  • Claudi Alsina, Roger Nelsen. Icons of Mathematics. An exploration of twenty key images. — Mathematical Association of America, 2011. — С. 125–126. — ISBN 978-0-88385-352-8.
  • Nick Lord. Quadrilaterals with area formula  // Mathematical Gazette. — 2012. — Июль (т. 96).
  • Martin Josefsson. Maximal Area of a Bicentric Quadrilateral // Forum Geometricorum. — 2012. — Т. 12. — С. 237–241.
  • Claudi Alsina, Roger Nelsen. When less is more: visualizing basic inequalities. — Mathematical Association of America, 2009. — С. 64–66. — ISBN 978-0-88385-342-9.
  • Durell C. V., Robson A. Advanced Trigonometry. — Dover, 2003.
  • Radic M., Kaliman Z., Kadum V. A condition that a tangential quadrilateral is also a chordal one. — Mathematical Communications, 2007. — Т. 12. — С. 33–52.
  • Ovidiu T. Pop. Identities and inequalities in a quadrilateral // Octogon Mathematical Magazine. — 2009. — Октябрь (т. 17, № 2). — С. 754-763.
  • Mirko Radic. Certain inequalities concerning bicentric quadrilaterals, hexagons and octagons // Journal of Inequalities in Pure and Applied Mathematics. — 2005. — Т. 6, вып. 1.
  • Zhang Yun. Euler's Inequality Revisited // Mathematical Spectrum. — 2008. — Май (т. 40, № 3). — С. 119-121.
  • Mark Shattuck. A Geometric Inequality for Cyclic Quadrilaterals // Forum Geometricorum. — 2018. — Т. 18. — С. 141-154.
  • Paul Yiu. Euclidean Geometry. — 1998. — С. 158-164.
  • Juan Carlos Salazar. Fuss's Theorem // Mathematical Gazette. — 2006. — Июль (т. 90). — С. 306–307.
  • Byerly W. E. The In- and-Circumscribed Quadrilateral // The Annals of Mathematics. — 1909. — Т. 10. — С. 123–128. — doi:10.2307/1967103.
  • Ovidiu Calin. Euclidean and Non-Euclidean Geometry a metric approach. — 2nd ed.. — Wiley Custom Publishing, 2010. — С. 153–158.
  • Albrecht Hess. On a circle containing the incenters of tangential quadrilaterals // Forum Geometricorum. — 2014. — Т. 14. — С. 389–396.