Центральная предельная теорема

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Центра́льные преде́льные теоре́мы (Ц. П. Т.) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.

Классическая Ц. П. Т.[править | править вики-текст]

Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное математическое ожидание и дисперсию. Обозначим последние и , соответственно. Пусть также

.

Тогда

по распределению при ,

где  — нормальное распределение с нулевым математическим ожиданием и стандартным отклонением, равным единице. Обозначив символом выборочное среднее первых величин, то есть , мы можем переписать результат центральной предельной теоремы в следующем виде:

по распределению при .

Скорость сходимости можно оценить с помощью неравенства Берри — Эссеена.

Замечания[править | править вики-текст]

  • Неформально говоря, классическая центральная предельная теорема утверждает, что сумма независимых одинаково распределённых случайных величин имеет распределение, близкое к . Эквивалентно, имеет распределение близкое к .
  • Так как функция распределения стандартного нормального распределения непрерывна, сходимость к этому распределению эквивалентна поточечной сходимости функций распределения к функции распределения стандартного нормального распределения. Положив , получаем , где  — функция распределения стандартного нормального распределения.
  • Центральная предельная теорема в классической формулировке доказывается методом характеристических функций (теорема Леви о непрерывности).
  • Вообще говоря, из сходимости функций распределения не вытекает сходимость плотностей. Тем не менее в данном классическом случае это имеет место.

Локальная Ц. П. Т.[править | править вики-текст]

В предположениях классической формулировки, допустим в дополнение, что распределение случайных величин абсолютно непрерывно, то есть оно имеет плотность. Тогда распределение также абсолютно непрерывно, и более того,

при ,

где  — плотность случайной величины , а в правой части стоит плотность стандартного нормального распределения.

Обобщения[править | править вики-текст]

Результат классической центральной предельной теоремы справедлив для ситуаций гораздо более общих, чем полная независимость и одинаковая распределённость.

Ц. П. Т. Линдеберга[править | править вики-текст]

Пусть независимые случайные величины определены на одном и том же вероятностном пространстве и имеют конечные математические ожидания и дисперсии: .

Пусть .

Тогда .

И пусть выполняется условие Линдеберга:

где функция - индикатор.

Тогда

по распределению при .

Ц. П. Т. Ляпунова[править | править вики-текст]

Пусть выполнены базовые предположения Ц. П. Т. Линдеберга. Пусть случайные величины имеют конечный третий момент. Тогда определена последовательность

.

Если предел

(условие Ляпунова),

то

по распределению при .

Ц. П. Т. для мартингалов[править | править вики-текст]

Пусть процесс является мартингалом с ограниченными приращениями. В частности, допустим, что

и приращения равномерно ограничены, то есть

п.н.

Введём случайные процессы и следующим образом:

и

.

Тогда

по распределению при .

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]