Сложное движение

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В физике, при рассмотрении нескольких систем отсчёта (СО) возникает понятие сложного движения — когда материальная точка движется относительно какой-либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом возникает вопрос о связи движений точки в этих двух системах отсчета (далее СО).

Геометрия задачи[править | править вики-текст]

Материальная точка в двух СО[1].

Обычно выбирают одну из СО за базовую («абсолютную», «лабораторную», «неподвижную», «СО неподвижного наблюдателя», «первую», «нештрихованную» и т. п.), другую называют «подвижной» («СО подвижного наблюдателя», «штрихованную», «вторую» и т. п.) и вводят следующие термины:

  • абсолютное движение — это движение материальной точки/тела в базовой СО. В этой СО радиус-вектор тела будем обозначать \vec r(t), а скорость тела — \vec V_r(t).
  • относительное движение — это движение материальной точки/тела относительно подвижной системы отсчёта. В этой СО радиус-вектор тела — \vec {r'}(t), скорость тела — \vec V_{r'}(t).
  • перено́сное движение — это движение подвижной системы отсчета и всех постоянно связанных с нею точек пространства[2] относительно базовой системы отсчета. Переносное движение материальной точки — это движение той точки подвижной СО, в которой в данный момент времени находится эта материальная точка. Радиус-вектор начала системы координат подвижной СО — \vec R(t), его скорость — \vec V_R(t), угловая скорость вращения подвижной системы отсчета относительно базовой — \vec\omega_R(t). Если эта угловая скорость равна нулю, говорят о поступательном движении подвижной СО.

Переносная скорость \vec V_e (t) — это скорость в базовой системе отсчёта произвольной точки, зафиксированной относительно подвижной СО, обусловленная движением этой подвижной СО относительно базовой. Например, это скорость той точки подвижной системы отсчёта, в которой в данный момент времени находится материальная точка. В переносная скорость \vec V_e (t) равна \vec V_R (t) = \frac{d\vec R}{dt} только в тех случаях, когда подвижная СО движется поступательно.

Также вводятся и понятия соответствующих ускорений \vec a_r (t), \vec a_{r'} (t), \vec a_R (t), \vec \varepsilon_R (t). и \vec a_e (t).

С точки зрения только чистой кинематики (задачи пересчёта кинематических величин — координат, скоростей, ускорений — от одной системы отсчета к другой) не имеет значения, является ли какая-то из систем отсчета инерциальной или нет; это никак не сказывается на формулах преобразования кинематических величин при переходе от одной системы отсчета к другой (то есть эти формулы можно применять и для перехода от одной произвольной неинерциальной вращающейся системы отсчета к другой).

Однако для динамики инерциальные системы отсчета имеют особое значение: в них механические явления описываются наиболее простым образом и, соответственно, уравнения динамики формулируются изначально именно для инерциальных систем отсчета[3]. Поэтому особенно важны случаи перехода от инерциальной системы отсчета к другой инерциальной, а также от инерциальной к неинерциальной и обратно.

В дальнейшем изложении по умолчанию базовая СО предполагается инерциальной, а на подвижную никаких ограничений не накладывается.

Классическая механика[править | править вики-текст]

Классическая механика опирается на представления о Евклидовом пространстве и принцип относительности Галилея, что позволяет использовать преобразования Галилея.

Кинематика сложного движения точки[править | править вики-текст]

Траектории одного и того же движения в разных системах отсчёта.
Вверху (в инерциальной системе): дырявое ведро с краской двигают на колосниках по прямой над поворачивающейся театральной сценой. Траектория прямая.
Внизу (в неинерциальной системе): то же самое, но при взгляде с точки зрения наблюдателя, стоящего на вращающейся сцене. Траектория кривая, и соответствует следу от краски на сцене.

Кинематика движения, основанная на анализе траектории движущегося тела, в общем случае не даёт полной информации для классификации этих движений. Так, движение по прямой в неинерциальной системе отсчёта может быть криволинейным (и, следовательно, обусловленным действующими на тело силами) в инерциальной СО. И, наоборот, прямолинейное в инерциальной СО может быть криволинейным в неинерциальной, и, следовательно, провоцировать представление о якобы действующих на тело силах.

Путь[править | править вики-текст]

Абсолютное движение и его путь представлены изменением радиуса вектора \vec r, рассматриваемого в виде суммы векторов переносного и относительного движений:

\vec r = \vec R + \vec {r'}

Скорость[править | править вики-текст]

Основные задачи кинематики сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Связь скоростей определяется дифференцированием связи для положений. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, то есть:

\vec V_r = \vec V_{r'} + \vec V_e

Данное равенство представляет собой содержание теоремы о сложении скоростей[4].

Следует отметить, что вместе с приведённым равенством всегда справедливо и соотношение

\frac{d\vec r}{dt} = \frac{d(\vec R + \vec {r'})}{dt} = \frac{d\vec R}{dt} + \frac{d\vec {r'}}{dt}.

Однако в общем случае в этом соотношении \frac{d\vec R}{dt} не является переносной скоростью, а \frac{d\vec {r'}}{dt} не относительная скорость. Таковыми они становятся только в тех случаях, когда подвижная СО движется поступательно, то есть, не вращаясь[5].

Ускорение[править | править вики-текст]

Связь ускорений можно найти путём дифференцирования связи для скоростей, не забывая, что относительное перемещение также может зависеть от времени.

Абсолютное ускорение \vec a_r(t) будет равно сумме:

\vec a_r \ \ = \ \ \frac{d^2\vec r}{dt^2} \ \ = \ \ 
\frac{d^2 \vec R }{dt^2} \ \ + \ \ 
\frac{d \vec \omega}{dt}\times \vec {r'} \ \ + \ \ 
\vec\omega \times \left[ \vec\omega \times \vec {r'} \right] \ \ + \ \ 
{2\ \vec \omega \times \vec V_r'} \ \ + \ \ 
\vec a_{r'}


Здесь:

  • первый член — переносное поступательное ускорение второй системы относительно первой,
  • второй член — переносное вращательное ускорение второй системы, возникающее из-за неравномерности ее вращения.
  • третий член представляет собой вектор, противоположно направленный осестремительной составляющей \vec {r'}_n вектора \vec {r'}, перпендикулярной \vec \omega (что можно получить, рассматривая это двойное векторное произведение — оно равно  - \vec {r'}_n\omega^2 ) и потому представляет собой осестремительное ускорение. Оно совпадает с нормальным переносным ускорением той точки вращающейся системы, с которой в данный момент совпадает движущаяся точка (не путать с нормальным ускорением движущейся точки, направленным по нормали к ее траектории).
  • четвертый член есть Кориолисово ускорение, порождаемое взаимным влиянием переносного вращательного движения второй системы отсчета и относительного поступательного движения точки относительно ее.
  • последний член  \vec a_{r'} = \frac{ d \vec V_{r'} } {dt}  — ускорение точки относительно подвижной системы отсчета.

Кинематика сложного движения тела[править | править вики-текст]

Сложное поступательное движение тела в трёхмерном пространстве

Согласно Первому закону Ньютона, все виды движений при их рассмотрении в инерциальной системе координат могут быть отнесены к одной из двух категорий. А именно — к категории прямолинейных и равномерных (то есть имеющих постоянную скорость) движений, возможных исключительно при отсутствии нескомпенсированных сил, действующих на тело. Нередко встречающееся, даже в справочной литературе[6] , отнесение этого вида движений к категории поступательных движений противоречит определению понятия «Поступательное движение», поскольку движение, имеющее классификационный признак поступательного, в инерциальной системе может происходить по любой траектории, но не обязательно исключительно по прямой.

К другой категории относятся все остальные виды движений.

Для твёрдого тела, когда все составные (то есть относительные и переносные) движения являются поступательными, абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. В общем случае движение будет слагаться из серии мгновенных винтовых движений.

Рассчитать взаимосвязь скоростей разных точек твёрдого тела в разных системах отсчёта можно с помощью комбинирования формулы сложения скоростей и формулы Эйлера для связи скоростей точек твёрдого тела. Связь ускорений находится простым дифференцированием полученного векторного равенства по времени.

Динамика сложного движения точки[править | править вики-текст]

Силы, действующие на тело, находящееся на поверхности Земли. Чертёж относится к рассмотрению сил, действующих на тело, в двух различных системах отсчёта. Первая — инерциальная система отсчёта, вторая — неинерциальная система отсчёта, связанная с вращающейся Землёй. В первом случае на тело действуют сила гравитационного притяжения и реакция опоры. Их сумма (зелёный вектор) играет роль центростремительной силы и заставляет тело вращаться вместе с Землёй. Во втором случае действует дополнительная сила — переносная сила инерции (синий вектор), в результате действие всех сил уравновешивается, и тело в этой системе отсчёта ускорения не испытывает.

Концепция Ньютона о пропорциональности получаемого телом ускорения под действием любой силы в инерциальных системах отсчёта выполняется всегда. Под силой при этом понимается мера механического действия на данное материальное тело других тел[7], обязательно являющаяся результатом взаимодействия тел[8]. Альтернатив этой концепции в классическом разделе материалистической физики нет.

Однако при рассмотрении движений в неинерциальной системе отсчёта, наряду с силами, происхождение которых можно проследить, как результат взаимодействия с другими телами и полями, возможно ввести в рассмотрение и физические величины другой природы — силы инерции. Их введение и использование позволяет придать уравнению движения тел в неинерциальных системах отсчёта форму, совпадающую с формой уравнения второго закона Ньютона в инерциальных системах отсчёта.

Для того, чтобы различать силы двух упомянутых видов, термин силы инерции часто сопровождают дополнительным определением, таким, как, например фиктивные[9] или кажущиеся[10].

Привлечение представлений о силах инерции для описания движения тел в неинерциальных системах отсчёта может быть полезным и эффективным. Например, действием силы инерции в системе отсчёта, связанной с вращающейся вокруг своей оси Землёй, может быть объяснён эффект замедления хода маятниковых часов, наблюдающийся по мере их приближения к экватору. Другой пример — действие силы Кориолиса на воду в реках, текущих в меридиональном направлении. Следствием такого действия является неодинаковость размыва правых и левых (по направлению течения) берегов рек. Ещё более значительным является действие силы Кориолиса на морские течения и воздушные потоки в атмосфере[9].

Релятивистская механика[править | править вики-текст]

Релятивистская механика опирается на неевклидово пространство Минковского и принцип относительности Эйнштейна, что вынуждает прибегать к более сложному преобразованию Лоренца. При скоростях, существенно меньших скорости света, релятивистская механика может быть сведена к классической.

Скорость[править | править вики-текст]

При скоростях, близких к скорости света, преобразования Галилея не являются точно инвариантными и классическая формула сложения скоростей перестаёт выполняться. Вместо этого, инвариантными являются преобразования Лоренца, а связь скоростей в двух инерциальных СО получается следующей: v_x' = \frac{v_x - u}{1-(v_x u)/c^2},   v_y' = \frac{v_y \sqrt{1-\frac{u^2}{c^2}}}{1-(v_x u)/c^2},   v_z' = \frac{v_z \sqrt{1-\frac{u^2}{c^2}}}{1-(v_x u)/c^2},

в предположении, что скорость \vec u направлена вдоль оси х системы S. Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.

Однако вводится величина — быстрота — которая аддитивна при переходе от одной СО к другой.

Неинерциальные СО[править | править вики-текст]

Связь скоростей и ускорений в системах отсчёта, движущихся друг относительно друга ускоренно, является значительно более сложной и определяется локальными свойствами пространства в рассматриваемых точках (зависит от производной тензора Римана).

Литература[править | править вики-текст]

  • Н. Г. Четаев. «Теоретическая механика». М.: Наука. 1987. 368 с.
  • М. М. Гернет. «Курс теоретической механики». М.: Высшая школа. 1973. 464 с.

Примечания[править | править вики-текст]

  1. Бронштейн И. Н., Семендяев К. А.. Справочник по математике. М.: Издательство «Наука». Редакция справочной физико-математической литературы.,1964 г., 608 стр.с ил. С.216 и далее.
  2. То есть точек, неподвижных относительно движущейся системы.
  3. Ландау Л. Д., Лифшиц Е. М. Механика. — М.: Наука, 1988. — Т. «Теоретическая физика», том I. — С. 13-15. — 215 с. — ISBN 5-02-013850-9.
  4. Тарг С. М. Краткий курс теоретической механики. — М.: Высшая школа, 1995. — С. 156. — 416 с. — ISBN 5-06-003117-9.
  5. Голубев Ю. Ф. Основы теоретической механики. — М.: МГУ, 2000. — С. 119. — 720 с. — ISBN 5-211-04244-1.
  6. Физический энциклопедический словарь/ Гл. ред. А. М. Прохоров. Ред.кол. Д. М. Алексеев, А. М. Бонч-Бруевич,А. С. Боровик-Романов и др. -М.: Сов.энциклопедия, 1983.-323 с.,ил, 2 л.цв.ил. страница 282
  7. Тарг С. М. Сила // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. Пойнтинга—Робертсона эффект — Стримеры. — С. 494. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  8. Kleppner D., Kolenkow R. J. An Introduction to Mechanics. — McGraw-Hill, 1973. — P. 59-60. — 546 p. — ISBN 0-07-035048-5.
  9. 1 2 Зоммерфельд А. Механика. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — 368 с. — ISBN 5-93972-051-X.
  10. Борн М. Эйнштейновская теория относительности. — М.: «Мир», 1972. — С. 81. — 368 с.

Иллюстрации[править | править вики-текст]