Изогональное сопряжение: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Строка 8: Строка 8:
== Свойства ==
== Свойства ==
* Изогональное сопряжение оставляет на месте только центры [[Вписанная окружность|вписанной]] и [[Вневписанная окружность|вневписанных окружностей]].
* Изогональное сопряжение оставляет на месте только центры [[Вписанная окружность|вписанной]] и [[Вневписанная окружность|вневписанных окружностей]].
* Точка, изогонально сопряжённая точке на описанной окружности — [[Бесконечно удалённая точка|бесконечно удалённая]]. Направление, задаваемое этой точкой, перпендикулярно [[Прямая Симсона|прямой Симсона]] исходной точки.
* Точка, ''изогонально сопряжённая'' точке на ''описанной окружности'' — [[Бесконечно удалённая точка|бесконечно удалённая]]. Направление, задаваемое этой точкой, перпендикулярно [[Прямая Симсона|прямой Симсона]] исходной точки.
* Если точки <math>P_a</math>, <math>P_b</math>, <math>P_c</math> симметричны точке <math>P</math> относительно сторон треугольника, то центр описанной окружности <math>P_aP_bP_c</math> изогонально сопряжён точке <math>P</math>.
* Если точки <math>P_a</math>, <math>P_b</math>, <math>P_c</math> симметричны точке <math>P</math> относительно сторон треугольника, то центр ''описанной окружности'' <math>P_aP_bP_c</math> ''изогонально сопряжён'' точке <math>P</math>.
* Если в треугольник вписан [[эллипс]], то его фокусы изогонально сопряжены.
* Если в треугольник вписан [[эллипс]], то его фокусы ''изогонально сопряжены''.
* Проекции изогонально сопряжённых точек на стороны лежат на одной окружности (верно и обратное). Центр этой окружности — середина отрезка между сопряжёнными точками. Частный случай — [[окружность девяти точек]].
* Проекции ''изогонально сопряжённых'' точек на стороны лежат на одной окружности (верно и обратное). Центр этой окружности — середина отрезка между ''сопряжёнными'' точками. Частный случай — [[окружность девяти точек]].
* Образ прямой при изогональном сопряжении — [[коническое сечение|коника]], описанная около треугольника. В частности, изогонально сопряжены бесконечно удалённая прямая и [[описанная окружность]], [[прямая Эйлера]] и [[гипербола Енжабека]], [[ось Брокара]] и [[гипербола Киперта]], линия центров вписанной и описанной окружности и [[гипербола Фейербаха]].
* Образ прямой при ''изогональном сопряжении'' — [[коническое сечение|коника]], описанная около треугольника. В частности, ''изогонально сопряжены'' бесконечно удалённая прямая и [[описанная окружность]], [[прямая Эйлера]] и [[гипербола Енжабека]], [[ось Брокара]] и [[гипербола Киперта]], линия центров ''вписанной'' и ''описанной'' окружности и [[гипербола Фейербаха]].
* Если коника <math>\alpha</math> изогонально сопряжена прямой <math>l</math>, то [[Трилинейная поляра|трилинейные поляры]] всех точек на <math>\alpha</math> будут проходить через точку, изогонально сопряжённую трилинейному полюсу <math>l</math>.
* Если ''коника'' <math>\alpha</math> ''изогонально сопряжена'' прямой <math>l</math>, то [[Трилинейная поляра|трилинейные поляры]] всех точек на <math>\alpha</math> будут проходить через точку, ''изогонально сопряжённую'' трилинейному полюсу <math>l</math>.


== Пары изогонально сопряжённых точек ==
== Пары изогонально сопряжённых точек ==

Версия от 16:31, 31 октября 2015

Точки и изогонально сопряжены
Преобразование над точками внутри треугольника

Изогона́льное сопряже́ние — геометрическое преобразование, получаемое отражением прямых, соединяющих исходные точки с вершинами заданного треугольника относительно биссектрис углов треугольника.

Определение

Точки и называются изогонально сопряжёнными (устаревшие названия — изогональными, обратными[1]) в треугольнике , если , , . Корректность данного определения можно доказать через теорему Чевы в синусной форме, существует и чисто геометрическое доказательство корректности этого определения. Изогональное сопряжение — преобразование, ставящее точке в соответствие изогонально сопряжённую ей. На всей плоскости за исключением прямых, содержащих стороны треугольника, изогональное сопряжение является взаимно-однозначным отображением.

Свойства

  • Изогональное сопряжение оставляет на месте только центры вписанной и вневписанных окружностей.
  • Точка, изогонально сопряжённая точке на описанной окружности — бесконечно удалённая. Направление, задаваемое этой точкой, перпендикулярно прямой Симсона исходной точки.
  • Если точки , , симметричны точке относительно сторон треугольника, то центр описанной окружности изогонально сопряжён точке .
  • Если в треугольник вписан эллипс, то его фокусы изогонально сопряжены.
  • Проекции изогонально сопряжённых точек на стороны лежат на одной окружности (верно и обратное). Центр этой окружности — середина отрезка между сопряжёнными точками. Частный случай — окружность девяти точек.
  • Образ прямой при изогональном сопряжении — коника, описанная около треугольника. В частности, изогонально сопряжены бесконечно удалённая прямая и описанная окружность, прямая Эйлера и гипербола Енжабека, ось Брокара и гипербола Киперта, линия центров вписанной и описанной окружности и гипербола Фейербаха.
  • Если коника изогонально сопряжена прямой , то трилинейные поляры всех точек на будут проходить через точку, изогонально сопряжённую трилинейному полюсу .

Пары изогонально сопряжённых точек

Координатная запись

В барицентрических координатах изогональное сопряжение записывается как:

,

где , ,  — длины сторон треугольника. В трилинейных координатах его запись имеет форму:

,

поэтому они удобны при работе с изогональным сопряжением. В других координатах запись изогонального сопряжения более громоздка.

Вариации и обобщения

Аналогично можно определить изогональное сопряжение относительно многоугольника. Фокусы эллипсов, вписанных в многоугольник, также будут изогонально сопряжены. Однако не для всех точек изогонально сопряжённая точка будет определена: так, в четырёхугольнике геометрическое место точек, для которых изогональное сопряжение определено, есть некоторая кривая третьего порядка; для пятиугольника будет существовать лишь одна пара изогонально сопряжённых точек (фокусы единственного вписанного в него эллипса), а в многоугольниках с бо́льшим числом вершин в общем случае изогонально сопряжённых точек не будет.

Можно определить также изогональное сопряжение в тетраэдре, в трилинейных координатах оно будет записываться аналогично плоскому изогональному сопряжению[2].

Следствия

Примечания

  1. Д. Ефремов. Новая геометрия треугольника. Одесса, 1902
  2. Изогональное сопряжение в тетраэдре и его гранях

См. также