Задача классификации

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Задача классифика́ции — задача, в которой множество объектов (ситуаций) необходимо разделить некоторым образом на классы, при этом задано конечное множество объектов, для которых известно, к каким классам они относятся (выборка), но классовая принадлежность остальных объектов неизвестна. Для решения задачи требуется построить алгоритм, способный классифицировать произвольный объект из исходного множества, то есть указать, к какому классу он относится.

В математической статистике задачи классификации называются также задачами дискриминантного анализа. В машинном обучении задача классификации решается, в частности, с помощью методов искусственных нейронных сетей при постановке эксперимента в виде обучения с учителем.

Существуют также другие способы постановки эксперимента — обучение без учителя, но они используются для решения другой задачи — кластеризации или таксономии. В этих задачах разделение объектов обучающей выборки на классы не задаётся, и требуется классифицировать объекты только на основе их сходства друг с другом. В некоторых прикладных областях, и даже в самой математической статистике, из-за близости задач часто не различают задачи кластеризации от задач классификации.

Некоторые алгоритмы для решения задач классификации комбинируют обучение с учителем с обучением без учителя, например, одна из версий нейронных сетей Кохонена — сети векторного квантования, обучаемые с учителем.

Математическая постановка задачи

[править | править код]

Пусть  — множество описаний объектов,  — множество номеров (или наименований) классов. Существует неизвестная целевая зависимость — отображение , значения которой известны только на объектах конечной обучающей выборки . Требуется построить алгоритм , способный классифицировать произвольный объект .

Вероятностная постановка задачи

[править | править код]

Более общей считается вероятностная постановка задачи. Предполагается, что множество пар «объект, класс» является вероятностным пространством с неизвестной вероятностной мерой . Имеется конечная обучающая выборка наблюдений , сгенерированная согласно вероятностной мере . Требуется построить алгоритм , способный классифицировать произвольный объект .

Признаковое пространство

[править | править код]

Признаком называется отображение , где  — множество допустимых значений признака. Если заданы признаки , то вектор называется признаковым описанием объекта . Признаковые описания допустимо отождествлять с самими объектами. При этом множество называют признаковым пространством.

В зависимости от множества признаки делятся на следующие типы:

  • бинарный признак: ;
  • номинальный признак:  — конечное множество;
  • порядковый признак:  — конечное упорядоченное множество;
  • количественный признак:  — множество действительных чисел.

Часто встречаются прикладные задачи с разнотипными признаками, для их решения подходят далеко не все методы.

Типология задач классификации

[править | править код]

Типы входных данных

[править | править код]

Классификацию сигналов и изображений называют также распознаванием образов.

Типы классов

[править | править код]
  • Двухклассовая классификация. Наиболее простой в техническом отношении случай, который служит основой для решения более сложных задач.
  • Многоклассовая классификация. Когда число классов достигает многих тысяч (например, при распознавании иероглифов или слитной речи), задача классификации становится существенно более трудной.
  • Непересекающиеся классы.
  • Пересекающиеся классы. Объект может относиться одновременно к нескольким классам.
  • Нечёткие классы. Требуется определять степень принадлежности объекта каждому из классов, обычно это действительное число от 0 до 1.

Литература

[править | править код]
  • Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: классификация и снижение размерности. — М.: Финансы и статистика, 1989.
  • Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.
  • Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение / пер. с анг. А. А. Слинкина. — 2-е изд., испр.. — М.: ДМК Пресс, 2018. — 652 с. — ISBN 978-5-97060-618-6.
  • Журавлёв Ю. И., Рязанов В. В., Сенько О. В. «Распознавание». Математические методы. Программная система. Практические применения. — М.: Фазис, 2006. ISBN 5-7036-0108-8.
  • Загоруйко Н. Г. Прикладные методы анализа данных и знаний. — Новосибирск: ИМ СО РАН, 1999. ISBN 5-86134-060-9.
  • Шлезингер М., Главач В. Десять лекций по статистическому и структурному распознаванию. — Киев: Наукова думка, 2004. ISBN 966-00-0341-2.
  • Hastie, T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. — 2nd ed. — Springer-Verlag, 2009. — 746 p. — ISBN 978-0-387-84857-0..
  • Mitchell T. Machine Learning. — McGraw-Hill Science/Engineering/Math, 1997. ISBN 0-07-042807-7.