Нечёткая логика
Нечёткая логика (англ. fuzzy logic) — раздел математики, являющийся обобщением классической логики и теории множеств, базирующийся на понятии нечёткого множества, впервые введённого Лотфи Заде в 1965 году как объекта с функцией принадлежности элемента ко множеству, принимающей любые значения на отрезке , а не только или . На основе этого понятия вводятся различные логические операции над нечёткими множествами и формулируется понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.
Предметом нечёткой логики считается исследование рассуждений в условиях нечёткости, размытости, сходных с рассуждениями в обычном смысле, и их применение в вычислительных системах[1].
Направления исследований нечёткой логики[править | править код]
В настоящее время[уточнить] существует по крайней мере два основных направления научных исследований в области нечёткой логики:
- нечёткая логика в широком смысле (теория приближённых вычислений);
- нечёткая логика в узком смысле (символическая нечёткая логика).
Математические основы[править | править код]
Символическая нечёткая логика[править | править код]
Символическая нечёткая логика основывается на понятии t-нормы. После выбора некоторой t-нормы (а её можно ввести несколькими разными способами) появляется возможность определить основные операции над пропозициональными переменными: конъюнкцию, дизъюнкцию, импликацию, отрицание и другие.
Нетрудно доказать теорему о том, что дистрибутивность, присутствующая в классической логике, выполняется только в случае, когда в качестве t-нормы выбирается t-норма Гёделя[уточнить].
Кроме того, в силу определённых причин, в качестве импликации чаще всего выбирают операцию, называемую residium (она, вообще говоря, также зависит от выбора t-нормы).
Определение основных операций, перечисленных выше, приводит к формальному определению базисной нечёткой логики, которая имеет много общего с классической булевозначной логикой (точнее, с исчислением высказываний).
Существуют три основных базисных нечётких логики: логика Лукасевича, логика Гёделя и вероятностная логика (англ. product logic). Интересно, что объединение любых двух из трёх перечисленных выше логик приводит к классической булевозначной логике.
Синтез функций непрерывной логики заданных таблично[править | править код]
Функция нечёткой логики Заде всегда принимает значение одного из своих аргументов либо его отрицания. Таким образом, функцию нечёткой логики можно задать таблицей выбора[2], в которой перечислены все варианты упорядочения аргументов и отрицаний, и для каждого варианта указано значение функции. Например, строка таблицы функции двух аргументов может иметь следующий вид:
.
Однако произвольная таблица выбора не всегда задаёт функцию нечёткой логики. В работе[3] был сформулирован критерий, позволяющий установить является ли функция, заданная таблицей выбора, функцией нечёткой логики и предложен простой алгоритм синтеза, основанный на введённых концепциях конституент минимума и максимума. Функция нечёткой логики представляет собой дизъюнкцию конституент минимума, где конституента максимума — это конъюнкция переменных текущей области больших либо равных значению функции в этой области (справа от значения функции в неравенстве, включая значение функции). Например, для указанной строки таблицы конституента минимума имеет вид .
Теория приближённых вычислений[править | править код]
Основное понятие нечёткой логики в широком смысле — нечёткое множество, определяемое при помощи обобщённого понятия характеристической функции. Затем вводятся понятия объединения, пересечения и дополнения множеств (через характеристическую функцию; задать можно различными способами), понятие нечёткого отношения, а также одно из важнейших понятий — понятие лингвистической переменной.
Вообще говоря, даже такой минимальный набор определений позволяет использовать нечёткую логику в некоторых приложениях, для большинства же необходимо задать ещё и правило вывода (и оператор импликации).
Нечёткая логика и нейронные сети[править | править код]
Поскольку нечёткие множества описываются функциями принадлежности, а t-нормы и k-нормы обычными математическими операциями, можно представить нечёткие логические рассуждения в виде нейронной сети. Для этого функции принадлежности надо интерпретировать как функции активации нейронов, передачу сигналов как связи, а логические t-нормы и k-нормы, как специальные виды нейронов, выполняющие математические соответствующие операции. Существует большое разнообразие подобных нейро-нечётких сетей (neuro-fuzzy network (англ.)) . Например, ANFIS (Adaptive Neuro fuzzy Inference System) — адаптивная нейро-нечеткая система вывода.[4] (англ.)
Она может быть описана в универсальной форме аппроксиматоров как
,
кроме того, этой формулой могут быть описаны также некоторые виды нейронных сетей, такие как радиально базисные сети (RBF), многослойные персептроны (MLP), а также вейвлеты и сплайны.
Примеры[править | править код]
Нечёткое множество, содержащее число 5[править | править код]
Нечёткое множество, содержащее число 5, можно задать, например, такой характеристической функцией:
Пример определения лингвистической переменной[править | править код]
В обозначениях, принятых для лингвистической переменной:
- X = «Температура в комнате»
- U = [5, 35]
- T = {«холодно», «тепло», «жарко»}
Характеристические функции:
Правило G порождает новые термы с использованием союзов «и», «или», «не», «очень», «более или менее».
- не A:
- очень A:
- более или менее A:
- A или B:
- A и B:
Нечёткая логика в информатике[править | править код]
Нечёткая логика — набор нестрогих правил, в которых для достижения поставленной цели могут использоваться радикальные идеи, интуитивные догадки, а также опыт специалистов, накопленный в соответствующей области. Нечёткой логике свойственно отсутствие строгих стандартов. Чаще всего она применяется в экспертных системах, нейронных сетях и системах искусственного интеллекта. Вместо традиционных значений Истина и Ложь в нечёткой логике используется более широкий диапазон значений, среди которых Истина, Ложь, Возможно, Иногда, Не помню (Как бы Да, Почему бы и Нет, Ещё не решил, Не скажу…). Нечёткая логика просто незаменима в тех случаях, когда на поставленный вопрос нет чёткого ответа (да или нет; «0» или «1») или наперёд неизвестны все возможные ситуации. Например, в нечёткой логике высказывание вида «X есть большое число» интерпретируется как имеющее неточное значение, характеризуемое некоторым нечётким множеством. «Искусственный интеллект и нейронные сети — это попытка смоделировать на компьютере поведение человека. А так как люди редко видят окружающий мир лишь в чёрно-белом цвете, возникает необходимость в использовании нечёткой логики».[5]
Примечания[править | править код]
- ↑ В. В. Круглов, M. И. Дли, Р. Ю. Голунов. Нечеткая логика и искусственные нейронные сети. — М.: Физматлит, 2000. — 224 с. ISBN 5-94052-027-8. «Предметом нечёткой логики является построение моделей приближенных рассуждений человека и использование их в компьютерных системах»
- ↑ Волгин Л. И., Левин В. И. Непрерывная логика. Теория и применения. Таллинн : Б. и., 1990. — 210 с.
- ↑ Зайцев, Д.А.; Сарбей, В.Г.; Слепцовб А.И. Синтез функций непрерывной логики заданных табличноТ. 34, № 2. — С. 47—56. — doi:10.1007/BF02742068. // Кибернетика и системный анализ : журнал. — 1998. —
- ↑ Jang, J.-S. R., "ANFIS: Adaptive-Network-based Fuzzy Inference Systems, " IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665—685, May 1993.
- ↑ Illustrated Computer Dictionary for Dummies, 4th Edition — by Sandra Hardin Gookin & Dan Gookin — IDG Books Worldwide/John Wiley & Sons Inc (Computers) (February 2000) — ISBN 978-0764581250
Литература[править | править код]
- Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. — М.: Мир, 1976. — 166 с.
- Леоненков А. В. Нечеткое моделирование в среде MATLAB и fuzzyTECH. –– СПб.: БХВ Петербурr, 2005. –– 736 с.: ил.
- Орлов А. И. Задачи оптимизации и нечеткие переменные. — М.: Знание, 1980. — 64 с.
- Зак Юрий Александрович. Принятие решений в условиях нечетких и размытых данных: Fuzzy-технологии. — М.: «ЛИБРОКОМ», 2013. — 352 с. — ISBN 978-5-397-03451-7.
- Бочарников В. П. Fuzzy-технология: Математические основы. Практика моделирования в экономике.. — М.: Мир, 2001. — 328 с. — ISBN 966-521-082-3.
- Тэрано, Т., Асаи, К., Сугэно, М. Прикладные нечёткие системы. — М.: Мир, 1993. — 368 с.
- Новак В., Перфильева И., Мочкрож И. Математические принципы нечёткой логики = Mathematical Principles of Fuzzy Logic. — Физматлит, 2006. — 352 с. — ISBN 0-7923-8595-0.
- Рутковский Лешек. Искусственные нейронные сети. Теория и практика. — М.: Горячая линия - Телеком, 2010. — 520 с. — ISBN 978-5-9912-0105-6.
- Усков А. А., Кузьмин А. В. Интеллектуальные технологии управления. Искусственные нейронные сети и нечеткая логика. — М.: Горячая Линия — Телеком, 2004. — 143 с.
- Круглов В. В. Дли М. И. Голунов Р. Ю. Нечёткая логика и искусственные нейронные сети. М.: Физматлит, 2001. 221с.
- Дьяконов В. П., Круглов В. В. MATLAB. Математические пакеты расширения. Специальный справочник. СПб.: Питер, 2001. 480с (имеются главы по нечёткой логике и нейронным сетям).
- Дьяконов В. П., Абраменкова И. В., Круглов В. В. MATLAB 5 с пакетами расширений. Под редакцией проф. В. П. Дьяконова. М.: Нолидж, 2001. 880с (имеются главы по нечёткой логике и нейронным сетям).
- Дьяконов В. П., Круглов В. В. MATLAB 6.5 SP1/7/7 SP1/7 SP2+Simulink 5/6. Инструменты искусственного интеллекта и биоинформатики. М.: СОЛОН-Пресс, 2006. 456с.
- Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы: Пер. с польского И. Д. Рудинского. М.: Горячая линия — Телеком, 2004. — 452 с. ISBN 5-93517-103-1
- Штовба С. Д. Проектирование нечетких систем средствами MATLAB. М.: Горячая линия — Телеком.- 2007.- 288 c.
- Uziel Sandler, Lev Tsitolovsky Neural Cell Behavior and Fuzzy Logic. Springer, 2008. — 478 с. ISBN 978-0-387-09542-4
- Орловский С. А. Проблемы принятия решений при нечеткой исходной информации. — М.: Наука, 1981. — 208 с. — 7600 экз.
- Орлов А. И., Луценко Е. В. Системная нечеткая интервальная математика. — Монография (научное издание). — Краснодар, КубГАУ. 2014. — 600 с.[1]
- Орлов А. И., Луценко Е.В. Анализ данных, информации и знаний в системной нечеткой интервальной математике: научная монография. – Краснодар: КубГАУ, 2022. – 405 с. [2]
Ссылки[править | править код]
- Статьи и доклады Лотфи Заде . Дата обращения: 18 января 2010. Архивировано из оригинала 15 декабря 2005 года.
- Нечеткая логика, мягкие вычисления и вычислительный интеллект . Дата обращения: 18 января 2010. Архивировано 6 марта 2010 года.
- Учебник по математической логике, содержащий и главу о нечеткой логике . Дата обращения: 8 января 2009. Архивировано из оригинала 27 сентября 2007 года.
- Информационно-методический портал кафедры ИПМ (Информатика и прикладная математика) . — Ранее "Сайт, посвященный нечеткой логике". Разделы доступны только для зарегистрированных пользователей. Дата обращения: 8 января 2009. Архивировано 13 февраля 2012 года.
- Сергей Гриняев. Нечеткая логика в системах управления (html). Компьютерра–Онлайн (8 октября 2001). — Статья в журнале Компьютерра. Дата обращения: 8 января 2009. Архивировано 19 сентября 2016 года.
- Fuzzy Logic Toolbox (англ.). — Дополнение к MATLAB для моделирования систем с нечёткой логикой. Дата обращения: 8 января 2009. Архивировано 13 февраля 2012 года.
- Fuzzy Logic Toolbox - Проектирование систем управления (html). Экспонента.ру. Дата обращения: 8 января 2009. Архивировано 27 мая 2007 года.
- [3] Архивная копия от 11 февраля 2015 на Wayback Machine Научные статьи по нечёткой логике.
Для улучшения этой статьи желательно: |