Межзвёздная среда

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Карта местного межзвёздного облака

Межзвёздная среда (МЗС) — вещество и поля, заполняющие межзвёздное пространство внутри галактик[1]. Состав: межзвёздный газ, пыль (1 % от массы газа), межзвёздные магнитные поля, космические лучи, а также тёмная материя. Химический состав межзвёздной среды — продукт первичного нуклеосинтеза и ядерного синтеза в звёздах. На протяжении своей жизни звёзды испускают звёздный ветер, который возвращает в среду элементы из атмосферы звезды. А в конце жизни звезды с неё сбрасывается оболочка, обогащая межзвёздную среду продуктами ядерного синтеза.

Пространственное распределение межзвёздной среды нетривиально. Помимо общегалактических структур, таких как перемычка (бар) и спиральные рукава галактик, есть и отдельные холодные и тёплые облака, окружённые более горячим газом. Основная особенность МЗС — её крайне низкая плотность — 0,1..1000 атомов в кубическом сантиметре.

История открытия[править | править вики-текст]

Природа межзвёздной среды столетиями привлекала внимание астрономов и учёных. Термин «межзвёздная среда» впервые был использован Ф. Бэконом в 1626 г.[2]. «О, Небеса между звёздами, они имеют так много общего со звёздами, вращаясь (вокруг Земли) также как любая другая звезда». Позднее натурфилософ Роберт Бойль в 1674 году возражал: «Межзвёздная область небес, как полагают некоторые современные эпикурейцы, должна быть пустой».

После создания современной электромагнитной теории некоторые физики постулировали, что невидимый светоносный эфир является средой для передачи световых волн. Они также полагали, что эфир заполняет межзвёздное пространство. Р. Паттерсон в 1862 году писал[3]: «Это истечение является основой вибраций или колебательных движений в эфире, который заполняет межзвёздное пространство».

Применение глубоких фотографических обзоров ночного неба позволило Э. Барнарду получить первое изображение тёмной туманности, которое силуэтом выделялось на фоне звёзд галактики. Однако, первое открытие холодной диффузной материи было сделано Д. Гартманом в 1904 году после обнаружения неподвижного спектра поглощения в спектре излучения двойных звёзд, наблюдавшихся с целью проверки эффекта Доплера.

В своём историческом исследовании спектра Дельты Ориона Гартман изучал движение по орбите компаньонов системы Дельты Ориона и свет, приходящий от звезды и понял, что некоторая часть света поглощается на пути к Земле. Гартман писал, что «линия поглощения кальция очень слаба», а также, что «некоторым сюрпризом оказалось то, что линии кальция на длине волны 393,4 нанометров не движутся в периодическом расхождении линий спектра, которое присутствует в спектроскопически-двойных звёздах». Стационарная природа этих линий позволила Гартману предположить, что газ, ответственный за поглощение не присутствует в атмосфере Дельты Ориона, но, напротив, находится вне звезды и расположен между звездой и наблюдателем. Это исследование и стало началом изучения межзвездной среды.

После исследований Гартмана, Эгером в 1919 году во время изучения линий поглощения на волнах 589.0 и 589.6 нанометров в системах Дельты Ориона и Беты Скорпиона был обнаружен в межзвёздной среде натрий[4].

Дальнейшие исследования линий «H» и «K» кальция Билзом[5] (1936) позволили обнаружить двойные и несимметричные профили спектра Эпсилон и Дзета Ориона. Это были первые комплексные исследования межзвёздной среды в созвездии Ориона. Асимметричность профилей линий поглощения была результатом наложения многочисленных линий поглощения, каждая из которых соответствовала атомным переходам (например, линия «K» кальция) и происходила в межзвёздных облаках, каждое из которых имело свою собственную лучевую скорость. Так как каждое облако движется с разной скоростью в межзвёздном пространстве, как по направлению к Земле, так и удаляясь от неё, то в результате эффекта Доплера, линии поглощения сдвигались, либо в фиолетовую, либо в красную сторону соответственно. Это исследование подтвердило, что материя не распределена равномерно по межзвёздному пространству.

Интенсивные исследования межзвёздной материи позволили У. Пикерингу в 1912 году заявить[6], что «межзвёздная поглощающая среда, которая как показал Каптейн, поглощает только на некоторых волнах, может свидетельствовать о наличии газа и газообразных молекул, которые исторгаются Солнцем и звёздами».

В том же 1912-м году Виктор Гесс открыл космические лучи, энергичные заряженные частицы, которые бомбардируют Землю из космоса. Это позволило заявить некоторым исследователям, что они также наполняют собой межзвёздную среду. Норвежский физик Кристиан Биркеланд в 1913 году писал: «Последовательное развитие нашей точки зрения заставляет предполагать, что всё пространство заполнено электронами и свободными ионами всякого рода. Мы также склонны полагать, что все звёздные системы произошли от заряженных частиц в космосе. И совершенно не кажется невероятным думать, что большая часть массы Вселенной, может быть найдена не в звёздных системах или туманностях, но в „пустом“ пространстве»[7]

Торндайк в 1930 году писал: «Было бы ужасно осознавать, что существует непреодолимая пропасть между звёздами и полной пустотой. Полярные сияния возбуждаются заряженными частицами, которые эмитирует наше Солнце. Но если миллионы других звёзд также испускают заряженные частицы, а это непреложный факт, то абсолютный вакуум вообще не может существовать в галактике»[8].

Наблюдательные проявления[править | править вики-текст]

Перечислим основные наблюдательные проявления:

  1. Наличие светящихся туманностей ионизированного водорода вокруг горячих звёзд и отражательных газопылевых туманностей в окрестностях более холодных звёзд.
  2. Ослабление света звёзд (межзвёздное поглощение) из-за пыли, входящей в состав межзвёздной среды. А также связанным с этим покраснения света; наличие непрозрачных туманностей.
  3. Поляризация света на пылинках, ориентированных вдоль магнитного поля Галактики.
  4. Инфракрасное излучение межзвёздной пыли
  5. Радиоизлучение нейтрального водорода в радиодиапазоне на длине волны в 21 см
  6. Мягкое рентгеновское излучение горячего разреженного газа.
  7. Синхротронное излучение релятивистских электронов в межзвёздных магнитных полях.
  8. Излучение космических мазеров.

Структура МЗС крайне нетривиальна и неоднородна: гигантские молекулярные облака, отражательная туманность, протопланетная туманность, планетарная туманность, глобула и т. д. Это приводит к широкому спектру наблюдательных проявлений и процессов происходящих в среде. Далее в таблице приведены свойства основных компонентов среды для диска:

Фаза Температура
(К)
Концентрация
cm^{-3}
Масса облаков
(M_{\bigodot})
Размер
(пк)
Доля занимаемого объёма Способ наблюдения
Корональный газ \approx 5 \cdot 10^5 ~0.003 - - ~0.5 Рентген, линии поглощения металлов в УФ
Яркие области HII \approx 10^4 ~30 ~300 ~10 \sim 10^{-4} Яркая линия Hα
Зоны HII низкой плотности \approx 10^4 ~0.3 - - ~0.1 Линия Hα
Межоблачная среда \approx 10^4 ~0.1 - - ~0.4 Линия Lyα
Тёплые области HI \sim 10^3 ~1 - - ~0.01 Излучения HI на λ=21 см
Мазерные конденсации <100 \sim 10^{10} \sim 10^5 \sim 10^{-5} Мазерное излучение
Облака HI ≈80 ~10 ~100 ~10 ~0.01 Поглощения HI на λ=21 см
Гигантские молекулярные облака ~20 ~300 \sim 3 \cdot 10^5 ~40 \sim 3 \cdot 10^{-4}
Молекулярные облака ≈10 \sim 10^3 ~300 ~1 \sim 10^{-5} Линии поглощения и излучения молекулярного водорода в радио и инфракрасном спектре.
Глобулы ≈10 \sim 10^4 ~20 ~0.3 \sim 3 \cdot 10^{-9} Поглощение в оптическом диапазоне.

Мазерный эффект[править | править вики-текст]

Крабовидная Туманность, зелёный цвет — мазерное излучение

В 1965 г. в ряде спектров радиоизлучения были обнаружены очень интенсивные и узкие линии c λ=18 см. Дальнейшие исследования показали, что линии принадлежат молекуле OH, а их необычные свойство — результат мазерного излучения. В 1969 открывает мазерные источники от молекулы воды на λ=1,35 см, позже были обнаружены мазеры, работающие и на других молекулах.

Для мазерного излучения необходима инверсная населённость уровней (количество атомов на верхнем резонансном уровне больше, чем на нижнем). Тогда, проходя сквозь вещество, свет с резонансной частотой волны усиливается, а не ослабевает (это и называется мазерным эффектом). Для поддержания инверсной населённости необходима постоянная накачка энергией, поэтому все космические мазеры делятся на два типа:

  1. Мазеры, ассоциирующиеся с молодыми (возраст 10^5 лет) горячими ОВ-звёздами (а возможно, и с протозвёздами) и находящимися в областях звездообразования.
  2. Мазеры, связанные с сильно проэволюционировавшими холодными звёздами большой светимости.

Физические особенности[править | править вики-текст]

Отсутствие локального термодинамического равновесия (ЛТР)[править | править вики-текст]

В межзвёздной среде концентрация атомов мала, ровно как и оптическая толщина среды тоже. Это значит, что эффективная температура излучения — это температура излучения звёзд (~5000 К) и никак не соответствует температуре самой среды. При этом электронная и ионная температуры плазмы могут сильно отличаться друг от друга, поскольку обмен энергии при соударении происходит крайне редко. Таким образом, не существует единой температуры даже в локальном смысле.

Распределение числа атомов и ионов по населённостям уровней определяется балансом процессов рекомбинации и ионизации. ЛТР требует, чтобы эти процессы были в равновесии, чтобы выполнялось условие детального баланса, однако, в межзвёздной среде прямые и обратные элементарные процессы имеют разную природу, и поэтому детальный баланс установиться не может.

И наконец, малая оптическая толщина для жёсткого излучения и быстрых заряженных частиц приводит к тому, что энергия, выделяющаяся в какой-либо области пространства, уносится на большие расстояния. И охлаждение идёт по всему объёму сразу, а не в локальном пространстве, расширяющемся со скоростью звука в среде. Аналогично и идёт нагрев. Теплопроводность не способна передать тепло от удалённого источника и в дело вступают процессы, нагревающие большие объёмы сразу.

Однако, несмотря на отсутствие ЛТР, даже в очень разреженной космической плазме устанавливается максвелловское распределение электронов по скоростям, соответствующее температуре среды, поэтому для распределения частиц по энергиям можно пользоваться формулой Больцмана и говорить о температуре. Происходит так из-за дальнодействия кулоновских сил за довольно короткое время (для чисто водородной плазмы это время порядка 10^5 с), гораздо меньше времени соударения между частицами.

Для описания состояния газа введём объёмный коэффициент нагревания \Lambda(n,T) и коэффициент объёмного нагрева \Gamma(n,T). Тогда закон сохранения энергии элемента объёма dV с внутренней энергией E и давлением P запишется:

\frac{dQ}{dt}=\frac{dE}{dt}+P\frac{dV}{dt}=\Gamma-\Lambda

При тепловом равновесии dQ/dt=0, а значит равновесную температуру среды можно найти из соотношения Γ=Λ.

Механизмы нагрева[править | править вики-текст]

Говоря, что среда нагревается, мы подразумеваем рост средней кинетической энергии. При объёмном нагреве увеличивается кинетическая энергия каждой частицы. И каждая частица в единицу времени может увеличить свою энергию на конечную величину, а при отсутствии термодинамического равновесия, это означает, что скорость нагрева среды прямо пропорционально количеству частиц в единице объёма, то есть концентрации Γ(n,T)=nG(T). Функция G(T)[эрг/c]называется эффективностью нагрева и рассчитывается через элементарные процессы взаимодействия и излучения.

Ультрафиолетовое излучение звёзд (фотоионизация)

Классический фотоэффект: энергия кванта уходит на ионизацию атома с произвольного уровня i и кинетическую энергию электрона. Потом электроны соударяются с различными частицами и кинетическая энергия переходит в энергию хаотического движения, газ нагревается.

Однако не все так просто. Межзвёздный газ состоит из водорода, ионизовать который можно только жёстким УФ. И основными «перехватчиками» УФ-квантов оказываются атомы примесей: железа, кремния, серы, калия и др. Они играют важную роль в установлении теплового баланса холодного газа.

Ударные волны
NGC 2736, газ, внутри остатка сверхновой в созвездии «Паруса»

Ударные волны возникают при процессах, идущих со сверхзвуковыми скоростями (для МЗС это 1-10 км/с). Так происходит при вспышке сверхновой, сбросе оболочки, столкновения газовых облаков между собой, гравитационный коллапс газового облака и т. д. За фронтом ударной волны кинетическая энергия направленного движения быстро переходит в энергию хаотического движения частиц. Порой температура может достигать огромных значений (до миллиарда градусов внутри остатков сверхновой), причём основная энергия приходится на движение тяжёлых ионов (ионная температура). Поначалу температура легкого электронного газа значительно ниже, но постепенно благодаря кулоновским взаимодействиям ионная и электронная температура выравнивается. Если в плазме есть магнитное поле, то роль первой скрипки в выравнивании ионной и электронной температуры берет на себя турбулентность.

Проникающая радиация и космические лучи

Космические лучи и рентгеновское диффузное излучение -основные источники ионизации межзвёздной среды, а не УФ, как это можно было ожидать. Частицы космических лучей, взаимодействуя со средой, образуют электроны с очень большой энергией. Эта энергия теряется электроном, в упругих столкновениях, а также неупругих, приводящих к ионизации или возбуждению атомов и ионов. Надтепловые электроны, с энергией меньше 10 эВ теряют энергию в упругих столкновениях, нагревая газ. Такой механизм крайне эффективен при температурах <10^6. При 10^7 характерная тепловая скорость электронов сравнивается тепловой скоростью низкоэнергетических частиц космических лучей и скорость нагрева резко уменьшается.

Ионизация и нагрев с помощью мягкого диффузного рентгена от горячего газа ничем принципиально не отличается от нагрева космическими лучами. Всё различие в скорости нагрева (она у космических лучей на порядок выше) и в намного большем сечении фотоионизации с внутренних оболочек у рентгеновского излучения.

Жёсткое электромагнитное излучение (рентгеновские и гамма-кванты)

Осуществляется в основном вторичными электронами при фотоионизации и при комптоновском рассеянии. При этом передаваемая энергия покоящемуся электрону равна

 \Delta E=h\nu \frac{h\nu}{m_e c^2}(1-cos\theta)

для h\nu\ll m_e c^2 сечение рассеяние равно томсоновскому: \sigma_{T}\simeq 6,65*10^{-25} см².

Механизмы охлаждения[править | править вики-текст]

Как уже говорилось, межзвёздная среда оптически тонка и имеет невеликую плотность, а раз так, то основной механизм охлаждения — это излучение фотонов. Испускание же квантов зависит с бинарными процессами взаимодействия (частица-частица), поэтому суммарную скорость объёмного охлаждения можно представить в виде \Lambda(n,T)=n^2\lambda(T). Где функция охлаждения(λ) зависит только от температуры и химического состава.

Свободно-свободное (тормозное) излучение

Свободно-свободное (тормозное) излучение в космической плазме вызвано кулоновскими силами притяжения или отталкивания. Электрон ускоряется в поле иона и начинают излучать электромагнитные волны. Электрон начинает переходить с одной орбиты на другую, но оставаясь свободным. При этом излучается весь спектр от рентгена до радио. Выделяющаяся при этом энергия из единицы объёма внутри телесного угла в ед. времени равна:

j_{\nu}(T)=\frac{16}{3}(\frac{\pi}{6})^{1/2} \frac{n_{\nu}Z^{2}e^6}{m^{2}_e c^3}(\frac{m_e}{kT})^{1/2} g\exp{\frac{-h\nu}{kt}}n_e n_i [эрг/см³]

Где n_{\nu} показатель преломления. g — множитель Гаунта, n_e и n_i — концентрация электронов и ионов соответственно. Для чисто водородной плазмы с равной концентрацией протонов и электронов коэффициент объёмного охлаждения равен:

\Lambda_{ff}(H) =\int\limits_{0}^{\infty}{j_{\nu}d\nu}\simeq 1.43\cdot 10^{-27} n_{e}^{2}\sqrt{T}[эрг/(см³ с)]

Однако космическая плазма не чисто водородная, в ней есть тяжёлые элементы, благодаря большому заряду которых, увеличивается эффективность охлаждения. Для полностью ионизированной среды с нормальным космическим содержанием элементов \Lambda_{ff}\approx 1.7\Lambda_{ff}(H). Этот механизм особенно эффективен для плазмы с T>10^5.

Рекомбинационное излучение
  • Радиативная рекомбинация
    При радиативной рекомбинации доля кинетической энергии рекомбинирующего электрона крайне мала в энергии испускаемого фотона h\nu =\xi_i +m_e v^2 (\xi_i -потенциал ионизации уровня, на который рекомбинирует электрон. Так как почти всегда\xi_i\gg m_ev^2/2 , то большая часть выделяющееся энергии не тепловая. Поэтому радиативная рекомбинация в общем случае малоэффективна для охлаждения газа. Однако мощность излучения единицы объёма из-за радиативной рекомбинации для равновесной среды с Т<10^5 превосходит потери на тормозное излучение \Lambda_r\approx 4\Lambda_{ff}.
  • Диэлектронная рекомбинация
    Диэлектронная рекомбинация состоит из двух этапов. Сначала энергичный электрон возбуждает атом или ион так, что образуется неустойчивой ион с двумя возбужденными электронами. Далее либо электрон испускается и ион перестаёт быть неустойчивым (автоионизация), либо испускается фотон с энергией порядка потенциала ионизации и ион вновь становиться устойчивым. Для того, чтобы возбудить атом нужен очень быстрый электрон, с энергией выше средней. Понижая количество быстрых электронов мы понижаем среднюю энергию системы, среда охлаждается. Данный механизм охлаждения начинает доминировать над радиативной рекомбинацией при T>10^5 К.
Двухфотонное излучение

Возникает при запрещённых резонансных переходах с уровней 2s_{1/2}\rightarrow 1s_{1/2} в водороде, при этом излучается два фотона, и с 2^1S_0 уровня в гелии и гелиеподобных ионах с испусканием также двух фотонов. Возбуждается же эти уровни в основном за счёт электронных ударов. Суммарная энергия образующихся фотонов соответствует разности энергии между двумя уровнями, но каждый из фотонов не имеет фиксированной энергии и образуется непрерывное излучение, кое мы видим в зонах HII. Эти фотоны имеют длину волны больше чем у Лайман-альфы и уходят из среды, являясь основной причиной охлаждения горячей космической плазмы с Т=10^6 -10^8 К.

Обратное комптоновское рассеяние

Если рассеяние фотона с энергией \epsilon происходит на быстром электроне с энергией  E=\gamma m_e c^2 важным становится передача энергии и импульса от электрона фотону. Лоренц-преобразование в системе электрона даёт энергию фотона \gamma\epsilon. Воспользуемся формулой эффекта Комптона и перейдём обратно получаем \epsilon_1 \sim\gamma^2\epsilon. Видно, что низкочастотные кванты превращаются в кванты жёсткого излучения. Усредняя по углам скорость потерь энергии одного такого электрона в поле изотропного излучения получим

-\left(\frac{dE}{dt}\right) _{compt} = \frac{4}{3}\sigma_Tc\gamma^2\beta^2\int\limits_0^\infty u_{\nu}d\nu

В случае теплового распределения электронов с концентрацией n_e и температурой T имеем <\beta^2>=<(v/c)^2>=3kT/m_e c^2  . Принимая \gamma\approx 1. Объёмное охлаждение такой среды составит:

\Lambda _c=-\left(\frac{dE}{dt}\right) _{compt} n_e = \frac{4kT}{m_e c^2}\sigma_T c n_e\int\limits_0^\infty u_{\nu}d\nu

Комптоновское охлаждение обычно доминирует в высокоионизированной и сильно нагретой плазме вблизи источников рентгеновского излучения. Благодаря ему среда не может нагреться выше T\sim\frac{\epsilon}{4k}. Этот механизм был важен в ранней вселенной до эпохи рекомбинации. В обычных условиях МЗС эффектом можно пренебречь.

Ионизация электронным ударом

Если все остальные механизмы охлаждения излучательные, энергия уносится фотонами, то этот безызлучательный. Тепловая энергия расходуется на отрыв электрона и запасается в виде внутренней энергии связи ион-электрон. Потом она высвечивается при рекомбинациях.

Излучение в спектральных линиях

Основной механизм охлаждения МЗС при Т<10^5 K.Излучение происходит при переходах с уровней, возбужденных после электронного удара. Спектральный диапазон в котором уносится энергия определяется температурой — чем больше температура, тем более высокий уровень возбуждается, тем энергичнее излучаемый фотон и охлаждение идёт быстрее. В таблице приведены какие линии доминируют при различных температурах.

Температура К Охлаждение в линиях
>10^6 Рентгеновские линии Н и Не-подобных ионов тяжёлых элементов
2 104 — 106 Резонансные УФ-линии Не и тяжёлых до Fe
(1-2)10^4 Линии Н (в основном Ly_{\alpha})
(5-10)10^3 Запрещённые линии тяжёлых элементов
30-10^4 Далёкие ИК-линии при переходах между уровнями тонкой структуры основных термов
(1-2) 10^3 Молекулярные уровни, в основном H_2
<30 Вращательные переходы молекул СО и воды H_2O

Тепловая неустойчивость[править | править вики-текст]

Теперь, зная все элементарные процессы и механизмы охлаждения и нагрева мы можем записать уравнения теплового баланса в виде nG(T)=n^2\lambda (T). Запишем уравнение ионизационного баланса, необходимое чтобы узнать населённость уровней. Решая, получим равновесную температуру T(n). Учитывая то, что вещество в межзвёздной среде крайне разряжено, то есть представляет из себя идеальный газ, подчиняющийся уравнению Менделеева-Клапейрона, найдём равновесное давление P(n). И обнаружим, что зависимость больше напоминает уравнение состояни газа Ван-дер-Вальса: существует область давлений, где одному значению p соответствует три равновесных эначения n. Решение на участке с отрицательной производной неустойчиво относительно малых возмущений: при давлении больше чем у окружающей среды она(неустойчивость?) будет расширяться до установления равновесия при меньшей плотности, а при меньшем картина с точностью до наоборот. Это объясняет наблюдаемое динамическое равновесие разреженной межзвёздной среды и более плотных облаков межзвёздного газа.

В реальной же среде ситуация гораздо сложнее. Во-первых, существует магнитное поле, которое препятствует сжатию, если только оно не происходит вдоль линий поля. Во-вторых, межзвёздная среда находится в непрерывном движении и её локальные свойства непрерывно меняются, в ней появляются новые источники энергии и исчезают старые. Так что условие теплового равновесия может вовсе не выполняться. В-третьих, кроме термодинамической неустойчивости существуют гравитационная и магнитогидродинамическая. И это без учётов всякого рода катаклизмов в виде вспышек сверхновых, приливных влияний, проходящих по соседству галактик, или прохождения самого газа через спиральные ветви Галактики.

Запрещённые линии и линия 21 см[править | править вики-текст]

Отличительной особенностью оптически тонкой среды является излучение в запрещённых линиях. Запрещёнными называют линии, которые запрещены правилами отбора, то есть происходят с метастабильных уровней. Характерное время жизни электрона на этом уровне — от 10^{-5} с до нескольких суток. При высоких концентрациях частиц их столкновение снимает возбуждение и линии не наблюдаются из-за крайней слабости. При и малых плотностях интенсивность линии не зависит от вероятности перехода, поскольку малая вероятность компенсируется большим числом атомов находящихся в метастабильном состоянии. Если ЛТР нет, то заселённость энергетических уровней следует рассчитывать из баланса элементарных процессов возбуждения и деактивации.

Важнейшей запрещённой линией МЗС является радиолиния атомарного водорода 21 см. Эта линия возникает при переходе между подуровнями сверхтонкой структуры 1^2S_{1/2} уровня водорода, связанными с наличием спина у электрона и протона. Вероятность этого перехода  A_{10} = 2.9 \cdot 10^{-15} (То есть 1 раз в 11 млн лет). Возбуждение происходит благодаря столкновению нейтральных атомов водорода. Расчёт населённости уровней даёт n_1=n_H/4, n_0=3n_H/4. При этом объёмный коэффициент излучения:

j_{\nu}=\frac{h\nu_{10}}{4\pi}n_1A_{10}\phi (\nu )

Где \phi (\nu ) — профиль линии, а фактор 4π предполагает изотропное излучение.

Исследования радиолинии 21 см позволили установить, что нейтральный водород в галактике в основном заключён в очень тонком 400 пк толщиной слое около плоскости Галактики. В распределении HI отчётливо прослеживаются спиральные ветви Галактики, Зеемановское расщепление абсорбционных компонент линии у сильных радиоисточников используется для оценки магнитного поля внутри облаков.

Вмороженность магнитного поля[править | править вики-текст]

Вмороженность магнитного поля означает сохранение магнитного потока через любой замкнутый проводящий контур при его деформации. В лабораторных условиях магнитный поток можно считать сохраняющимся в средах с высокой электропроводностью. В пределе бесконечной электропроводности бесконечное малое электрическое поле вызвало бы рост тока до бесконечной величины. Следовательно идеальный проводник не должен пересекать магнитные силовые линии, и таким образом возбуждать электрическое поле, а напротив должен увлекать за собой линии магнитного поля, магнитное поле оказывается как бы вмороженным в проводник.

Реальная космическая плазма, далеко не идеальна и вмороженность стоит понимать в том смысле, что требуется очень большое время для изменения потока через контур. На практике это означает, что мы можем считать поле постоянным пока облако сжимается, обращается и т. д.


Межзвездная пыль[править | править вики-текст]

Эволюция межзвёздной среды[править | править вики-текст]

Эволюция межзвёздной среды, а если быть точнее межзвёздного газа, тесно связана с химической эволюцией всей Галактики. Казалось бы, все просто: звезды поглощают газ, а после выбрасывают его обратно, обогащая его продуктами ядерного горения — тяжёлыми элементами, — таким образом металичность должна постепенно возрастать.

Теория Большого взрыва предсказывает, что в ходе первичного нуклеосинтеза образовались водород, гелий, дейтерий, литий и другие лёгкие ядра, которые раскалываются ещё на треке Хаяши или стадии протозвёзды. Иными словами, мы должны наблюдать долгоживущие G-карлики с нулевой металичностью. Но таковых в Галактике не найдено, более того, большинство из них имеют почти солнечную металичность. По косвенным данным, можно судить, что что-то подобное и в других галактиках. На данный момент вопрос остаётся открытым и ждёт своего решения.

В первичном межзвёздном газе не было и пыли. Как сейчас считается, пылинки образуются на поверхности старых холодных звёзд и покидают её вместе с истекающим веществом.

Солнце и межзвёздная среда[править | править вики-текст]

Межзвёздная среда в окрестностях Солнечной системы неоднородна. Наблюдения показывают, что Солнце движется со скоростью около 25 км/с сквозь Местное межзвёздное облако и может покинуть его в течение следующих 10 тысяч лет. Большую роль во взаимодействии Солнечной системы с межзвёздным веществом играет солнечный ветер.

Солнечный ветер это поток заряженных частиц (в основном водородной и гелиевой плазмы), с огромной скоростью истекающих из солнечной короны с нарастающей скоростью. Скорость солнечного ветра в гелиопаузе составляет примерно 450 км/с. Эта скорость превышает скорость звука в межзвездной среде. И если представить себе столкновение межзвездной среды и солнечного ветра как столкновение двух потоков, то при их взаимодействии возникнут ударные волны. А саму среду можно разделить на три области: область где есть только частицы МЗС, область где только частицы звездного ветра и область их взаимодействия.

И если бы межзвездный газ был бы полностью ионизован, как изначально предполагалось, то все бы обстояло именно так, как было выше описано. Но, как показали уже первые наблюдения межпланетной среды в Ly-aplha, нейтральные частицы межзвездной среды проникают в Солнечную систему[9]. Иными словами Солнце взаимодействует с нейтральным и ионизированным газом по-разному.


Взаимодействие с ионизованным газом[править | править вики-текст]

Граница ударной волны[править | править вики-текст]

Сначала солнечный ветер тормозится, становится более плотным, тёплым и турбулентным. Момент этого перехода называется границей ударной волны (termination shock) и находится на расстоянии около 85-95 а. е. от Солнца. (По данным, полученным с космических станций «Вояджер-1» и Вояджер-2, которые пересекли эту границу в декабре 2004 года и августе 2007.)

Гелиосфера и гелиопауза[править | править вики-текст]

Ещё приблизительно через 40 а. е. солнечный ветер сталкивается с межзвёздным веществом и окончательно останавливается. Эта граница, отделяющая межзвёздную среду от вещества Солнечной системы, называется гелиопаузой. По форме она похожа на пузырь, вытянутый в противоположную движению Солнца сторону. Область пространства, ограниченная гелиопаузой, называется гелиосферой.

Согласно данным аппаратов «Вояджер», гелиопауза с южной стороны оказалась ближе, чем с северной (73 и 85 астрономических единицы соответственно). Точные причины этого пока неизвестны; согласно первым предположениям, асимметричность гелиопаузы может быть вызвана действием сверхслабых магнитных полей в межзвёздном пространстве Галактики.

Головная ударная волна[править | править вики-текст]

По другую сторону гелиопаузы, на расстоянии порядка 230 а. е. от Солнца, вдоль головной ударной волны (bow shock) происходит торможение с космических скоростей налетающего на Солнечную систему межзвёздного вещества.

Взаимодействие с нейтральным водородом[править | править вики-текст]

Эффект перезарядки

Взаимодействие нейтральной частицы среды носит куда более сложный характер. Во-первых, она (частица) может отдать свой электрон иону из солнечного ветра (эффект перезарядки), а, во-вторых, может пройти до Солнца, где на неё будет влиять сила притяжения и световое давление.

Первый эффект приводит к резкому уменьшению размеров гелиосферы и резким контрастам, которые, как надеются исследователи, смогут засечь «Вояджер-1» и «Вояджер-2». Также это меняет картину в хвосте гелиосферы (куда движется «Пионер-10»), возникает диск Маха, тангенциальный разрыв и отражённая ударная волна[10]. К сожалению, проверить эти эффекты наблюдениями с Земли невозможно и можно только надеяться на измерения космическими аппаратами.

Те частицы межзвёздной среды, которым удалось проникнуть в межпланетную среду куда более интересны с точки зрения наблюдателя. Их не только можно наблюдать, но и получить информацию об:

  • условиях на границе гелиосферы;
  • многих важных деталях химии межзвёздной среды;
  • турбулентности межзвёздной среды;
  • физических условиях в межзвёздной среде.

Примечания[править | править вики-текст]

  1. Физика космоса / под редакцией Р. А. Сюняева. — 2-е изд. — М.: Советская энциклопедия, 1986. — С. 386.
  2. Bacon F, Sylva. 1626
  3. Patterson, Robert Hogarth «Colour in nature and art», Essays in History and Art 10 Reprinted from Blackwood’s Magazine. 1862
  4. Heger, Mary Lea (1919), «Stationary Sodium Lines in Spectroscopic Binaries», Publications of the Astronomical Society of the Pacific 31 (184): 304, doi:10.1086/122890
  5. Beals, C. S. (1936), «On the interpretation of interstellar lines», Monthly Notices of the Royal Astronomical Society 96: 661
  6. Pickering, W. H. (1912), «The Motion of the Solar System relatively to the Interstellar Absorbing Medium», Monthly Notices of the Royal Astronomical Society 72: 740
  7. Birkeland, Kristian, «Polar Magnetic Phenomena and Terrella Experiments», The Norwegian Aurora Polaris Expedition, 1902-03, New York: Christiania (Oslo), H. Aschelhoug & Co., pp. 720
  8. Thorndike, S. L. (1930), «Interstellar Matter», Monthly Publications of the Astronomical Society of the Pacific 42 (246): 99, doi:10.1086/124007
  9. Adams, T. F., and P. C. Frisch, High-resolution observations of the Lyman alpha sky background, Astrophys. J., 212, 300—308, 1977
  10. Влияние межзвездной среды на строение гелиосферы

Литература[править | править вики-текст]

Бочкарев Н.Г. Основы физики межзвездной среды.. — ISBN 978-5-397-01034-4

А.В. Засов, К.А. Постнов. Общая Астрофизика. — Фрязино: Век 2, 2006. — ISBN 5-85099-169-7