Метризуемое пространство

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Метризуемое пространство — топологическое пространство, гомеоморфное некоторому метрическому пространству. Иначе говоря, пространство, топология которого порождается некоторой метрикой.

Если такая метрика существует, то она не единственна — за исключением тривиальных случаев: когда пространство пусто или состоит лишь из одной точки. Например, топология каждого метризуемого пространства порождается некоторой ограниченной метрикой.

Необходимые условия метризуемости[править | править код]

Достаточное условие метризуемости[править | править код]

Каждое нормальное пространство (и даже каждое регулярное пространство) со счётной базой метризуемо. (П. С. Урысон и А. Н. Тихонов)

Эквивалентные условия метризуемости[править | править код]

Первый общий критерий метризуемости пространства был предложен в 1923 П. С. Александровым и П. С. Урысоном. На его основе были выработаны два следующих более совершенных критерия метризуемости:

  • пространство метризуемо в том и только в том случае, когда оно коллективно нормально и обладает счётным измельчающимся множеством открытых покрытий;
  • (критерий Стоуна — Архангельского) Пространство метризуемо, в том и только в том случае, когда оно обладает счётным фундаментальным множеством открытых покрытий и удовлетворяет -аксиоме отделимости. При этом множество открытых покрытий пространства называется фундаментальным, если для каждой точки , каждой её окрестности найдутся покрытие и окрестность точки такие, что каждый элемент покрытия , пересекающийся с , содержится в .

На другой важной концепции — локальной конечности — основаны общие метризационные критерии.

  • Критерий Нагаты — Смирнова: пространство метризуемо в том и только в том случае, если оно регулярно и обладает базой, распадающейся на счетное множество локально конечных семейств множеств.

Критерий Бинга аналогичен, но в нём вместо локально конечных фигурируют дискретные семейства множеств. Удобные варианты приведенных выше основных критериев метризуемости связаны с понятиями равномерной базы и регулярной базы. База пространства называется регулярной (равномерной), если для всякой точки и любой её окрестности найдется окрестность этой точки такая, что число элементов базы , пересекающих одновременно и дополнение к , конечно (соответственно, если множество элементов таких что , конечно).

  • Пространство метризуемо тогда и только тогда, когда оно коллективно нормально и обладает равномерной базой.
  • Для метризуемости -пространства необходимо и достаточно, чтобы оно обладало регулярной базой.

По теореме Ковальского, счётная степень ежа колючести (при ) является универсальным пространством для всех метризуемых пространств веса . Таким образом, пространство метризуемо тогда и только тогда, когда оно гомеоморфно подпространству счётной степени ежа некоторой колючести .[1]

Частные случаи[править | править код]

Метризационные критерии достигают простоты в ряде специальных классов пространств. Так, для метризуемости компакта любое из следующих трёх условий необходимо и достаточно:

Для метризуемости пространства топологической группы необходимо и достаточно, чтобы в последнем выполнялась первая аксиома счётности и аксиома отделимости , причем тогда пространство метризуемо инвариантной метрикой (например, по отношению к умножению слева).

О полноте[править | править код]

Не всякое метризуемое пространство метризуемо полной метрикой; таково, например, пространство рациональных чисел. Пространство метризуемо полной метрикой в том и только в том случае, если оно метризуемо и полно по Чеху, то есть является множеством типа Gδ в некотором содержащем его компакте. Важным топологическим свойством пространств, метризуемых полной метрикой, является свойство Бэра: пересечение любого счетного семейства всюду плотных открытых множеств всюду плотно.

Вариации и обобщения[править | править код]

К метризуемым пространствам наиболее близки по свойствам моровские пространства — вполне регулярные пространства, обладающие счетным измельчающимся семейством открытых покрытий, и кружевные пространства.

Пространство называется локально метризуемым, если каждая его точка имеет метризуемую окрестность.

Широкий спектр обобщений концепции метризуемого пространства получается, если варьировать аксиомы метрики, ослабляя их в том или ином отношении и рассматривая порожденные такими «метриками» топологии. На этом пути получаются симметризуемые пространства — путём отказа от аксиомы неравенства треугольника. В эту схему укладываются и моровские пространства. Другое важное обобщение концепции метризуемости связано с рассмотрением «метрик» со значениями в полуполях и других алгебраических образованиях общей природы.

Примечания[править | править код]

  1. Swardson, M. A. A short proof of Kowalsky's hedgehog theorem. американское математическое общество (1 июня 1979). Дата обращения: 12 июля 2014. Архивировано 14 июля 2014 года.

Литература[править | править код]

  • Александров, Павел Сергеевич, Борис Алексеевич Пасынков. Введение в теорию размерности: введение в теорию топологических пространств и общую теорию размерности. — Наукa, Главная редакция физико-математической литературы, 1973.