Космологическая постоянная

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Космологи́ческая постоя́нная — физическая постоянная, характеризующая свойства вакуума, которая вводится в общей теории относительности. С учётом космологической постоянной уравнения Эйнштейна имеют вид

R_{ab} - {R \over 2}  g_{ab} + \Lambda g_{ab} = {8 \pi G \over c^4} T_{ab}

где \Lambda — космологическая постоянная, g_{ab} — метрический тензор, R_{ab} — тензор Риччи, R — скалярная кривизна, T_{ab} — тензор энергии-импульса, c — скорость света, G — гравитационная постоянная Ньютона.

Космологическая постоянная была введена Эйнштейном для того, чтобы уравнения допускали пространственно однородное статическое решение. После построения теории эволюционирующей космологической модели Фридмана и получения подтверждающих её наблюдений, отсутствие такого решения у исходных уравнений Эйнштейна не рассматривается как недостаток теории.

До 1997 года достоверных указаний на отличие космологической постоянной от нуля не было, поэтому она рассматривалась в общей теории относительности как необязательная величина, наличие которой зависит от эстетических предпочтений автора. В любом случае её величина (меньше чем 10^{-29} г/см3) позволяет пренебрегать эффектами, связанными с её наличием, вплоть до масштабов скоплений галактик, то есть практически в любой рассматриваемой области, кроме космологии. В космологии, однако, наличие космологической постоянной может существенно изменять некоторые этапы эволюции наиболее распространённых космологических моделей. В частности, космологические модели с космологической постоянной предлагалось использовать для объяснения некоторых свойств распределения квазаров.

В 1998 году двумя группами астрономов, изучавших сверхновые звёзды, практически одновременно было объявлено об открытии ускорения расширения Вселенной (см. тёмная энергия), которое предполагает в простейшем случае объяснения ненулевую космологическую постоянную. К настоящему времени эта теория хорошо подтверждена наблюдениями, в частности, со спутника WMAP. Величина Λ соответствует плотности энергии вакуума 5{,}98\cdot10^{-10} Дж/м3.

Член \Lambda g_{ab} можно включить в тензор энергии-импульса и рассматривать как тензор энергии-импульса вакуума. Этот член инвариантен по отношению к преобразованиям локальной группы Лоренца, что соответствует принципу лоренц-инвариантности вакуума в квантовой теории поля. С другой стороны, \Lambda g_{ab} можно рассматривать как тензор энергии-импульса некоего статического космологического скалярного поля. Сейчас активно развиваются оба подхода.

По мнению многих физиков, занимающихся квантовой гравитацией, малая величина космологической постоянной трудно согласуется с предсказаниями квантовой физики и поэтому составляет отдельную проблему, именуемую «проблемой космологической постоянной». Всё дело в том, что у физиков нет теории, способной однозначно ответить на вопрос: почему космологическая постоянная так мала или вообще равна 0. Если рассматривать эту величину как тензор энергии-импульса вакуума, то она может интерпретироваться как суммарная энергия, которая находится в пустом пространстве. Естественным разумным значением такой величины считается её планковское значение, даваемое и различными расчётами энергии квантовых флуктуаций. Оно, однако, отличается от экспериментального на 120 порядков, это худшее теоретическое предсказание в истории физики[1].

Примечания[править | править вики-текст]

  1. Lee Smolin. Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует = The trouble with physics: the rise of string theory, the fall of a science, and what comes next. — Boston: Houghton Mifflin, 2006. — ISBN 9780618551057.

Ссылки[править | править вики-текст]