Центр масс

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Центр масс, центр ине́рции, барице́нтр (от др.-греч. βαρύς — тяжёлый + κέντρον — центр) — (в механике) геометрическая точка, характеризующая движение тела или системы частиц как целого[1]. Не является тождественным понятию центра тяжести (хотя чаще всего совпадает).

Определение[править | править вики-текст]

Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом[2]:

 \vec r_c= \frac{\sum \limits_i m_i \vec r_i}{\sum \limits_i m_i},

где  \vec r_c  — радиус-вектор центра масс,  \vec r_i  — радиус-вектор i-й точки системы, ~ m_i  — масса i-й точки.

Для случая непрерывного распределения масс:

 \vec r_c = {1 \over M} \int \limits_V \rho(\vec r) \vec r dV,
 M = \int \limits_V \rho(\vec r) dV,

где ~ M — суммарная масса системы, ~ V — объём, ~ \rho — плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

Можно показать, что если система состоит не из материальных точек, а из протяжённых тел с массами M_i, то радиус-вектор центра масс такой системы R_c связан с радиус-векторами центров масс тел R_{ci} соотношением[3]:

 \vec R_c= \frac{\sum \limits_i M_i\vec R_{ci}}{\sum \limits_i M_i}.

Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

Центры масс однородных фигур[править | править вики-текст]

Координаты центра масс однородной плоской фигуры можно вычислить по формулам (следствие из теорем Паппа — Гульдина):

x_s = \frac{V_y}{2\pi S} и y_s = \frac{V_x}{2\pi S}, где V_x, V_y — объём тела, полученного вращением фигуры вокруг соответствующей оси, S — площадь фигуры.

В механике[править | править вики-текст]

Понятие центра масс широко используется в механике и физике.

Движение твёрдого тела можно рассматривать как суперпозицию движения центра масс и вращательного движения тела вокруг его центра масс. Центр масс при этом движется так же, как двигалось бы тело с такой же массой, но бесконечно малыми размерами (материальная точка). Последнее означает, в частности, что для описания этого движения применимы все законы Ньютона. Во многих случаях можно вообще не учитывать размеры и форму тела и рассматривать только движение его центра масс.

Часто бывает удобно рассматривать движение замкнутой системы в системе отсчёта, связанной с центром масс. Такая система отсчёта называется системой центра масс (Ц-система), или системой центра инерции. В ней полный импульс замкнутой системы всегда остаётся равным нулю, что позволяет упростить уравнения её движения.

Центр масс в релятивистской механике[править | править вики-текст]

В случае высоких скоростей (порядка скорости света) (например, в физике элементарных частиц) для описания динамики системы применяется аппарат СТО. В релятивистской механике (СТО) понятия центра масс и системы центра масс также являются важнейшими понятиями, однако, определение понятия меняется:

 \vec r_c= \frac{\sum \limits_i \vec r_i E_i}{\sum \limits_i E_i},

где  \vec r_c  — радиус-вектор центра масс,  \vec r_i  — радиус-вектор i-й частицы системы, ~ E_i  — полная энергия i-й частицы.

Данное определение относится только к системам невзаимодействующих частиц. В случае взаимодействующих частиц в определении должны в явном виде учитываться импульс и энергия поля, создаваемого частицами[4].

Во избежание ошибок следует понимать, что в СТО центр масс характеризуется не распределением массы, а распределением энергии. В курсе теоретической физики Ландау и Лифшица предпочтение отдается термину «центр инерции». В западной литературе по элементарным частицам применяется термин «центр масс» (center-of-mass). Оба термина эквивалентны.

Скорость центра масс в релятивистской механике можно найти по формуле:

 \vec v_c= \frac{c^2}{\sum \limits_i E_i} \cdot \sum \limits_i \vec p_i.

Центр тяжести[править | править вики-текст]

Центр масс тела не следует путать с центром тяжести.

Центром тяжести механической системы называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю. Например, в системе, состоящей из двух одинаковых масс, соединённых несгибаемым стержнем, и помещённой в неоднородное гравитационное поле (например, планеты), центр масс будет находиться в середине стержня, в то время как центр тяжести системы будет смещён к тому концу стержня, который находится ближе к планете (ибо вес массы P = m·g зависит от параметра гравитационного поля g), и, вообще говоря, даже расположен вне стержня.

В постоянном параллельном (однородном) гравитационном поле центр тяжести всегда совпадает с центром масс. Поэтому на практике эти два центра почти совпадают (так как внешнее гравитационное поле в некосмических задачах может считаться постоянным в пределах объёма тела).

По этой же причине понятия центр масс и центр тяжести совпадают при использовании этих терминов в геометрии, статике и тому подобных областях, где применение его по сравнению с физикой можно назвать метафорическим и где неявно предполагается ситуация их эквивалентности (так как реального гравитационного поля нет и не имеет смысла учёт его неоднородности). В этих применениях традиционно оба термина синонимичны, и нередко второй предпочитается просто в силу того, что он более старый.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Тарг С. М.  Центр инерции (центр масс) // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин, А. М. Бонч-Бруевич, А. С. Боровик-Романов, Б. К. Вайнштейн, С. В. Вонсовский, А. В. Гапонов-Грехов, С. С. Герштейн, И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич, М. Е. Жаботинский, Д. Н. Зубарев, Б. Б. Кадомцев, И. С. Шапиро, Д. В. Ширков; под общ. ред. А. М. Прохорова. — М.: Советская энциклопедия, 1999. — Т. 5. — С. 624—625. — 692 с.
  2. Журавлёв, 2001, с. 66
  3. Фейнман Р., Лейтон Р., Сэндс М.  Выпуск 2. Пространство. Время. Движение // Фейнмановские лекции по физике. — М.: Мир, 1965. — 164 с. — С. 68.
  4. Ландау, Л. Д., Лифшиц, Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7

Литература[править | править вики-текст]