Алгебра над полем

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Подалгебра»)
Перейти к: навигация, поиск

Алгебра над полем — это векторное пространство, снабженное билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.

Алгебра называется ассоциативной, если операция умножения в ней ассоциативна; соответственно, алгебра с единицей — алгебра, в которой существует нейтральный относительно умножения элемент. В некоторых учебниках под словом «алгебра» подразумевается «ассоциативная алгебра», однако неассоциативные алгебры также представляют определённую важность.

Определение[править | править код]

Пусть  — векторное пространство над полем , снабженное операцией , называемой умножением. Тогда является алгеброй над , если для любых выполняются следующие свойства:

  • .

Эти три свойства можно выразить одним словом, сказав, что операция умножения является билинейной. В случае алгебр с единицей часто дают следующее эквивалентное определение:

Алгебра с единицей над полем  — это кольцо с единицей , снабженное гомоморфизмом колец с единицей , таким, что принадлежит центру кольца (то есть множеству элементов, коммутирующих по умножению со всеми остальными элементами). После этого можно считать, что является векторным пространством над со следующей операцией умножения на скаляр : .

Связанные определения[править | править код]

  • Гомоморфизм -алгебр — это -линейное отображение, такое что для любых из области определения.
  • Подалгебра алгебры над полем  — это линейное подпространство, такое что произведение любых двух элементов из этого подпространства снова ему принадлежит.
  • Левый идеал -алгебры — это линейное подпространство, замкнутое относительно умножения слева на произвольный элемент кольца. Соответственно, правый идеал замкнут относительно правого умножения; двусторонний идеал — идеал, являющийся левым и правым. Единственное отличие этого определения от определения идеала кольца — это требование замкнутости относительно умножения на элементы поля, в случае алгебр с единицей это требование выполняется автоматически.
  • Алгебра с делением — это алгебра над полем, такая что для любых её элементов и уравнения и разрешимы[1]. В частности, ассоциативная алгебра с делением, имеющая единицу, является телом.
  • Центр алгебры  — это множество элементов , таких что для любого элемента .

Примеры[править | править код]

Ассоциативные алгебры[править | править код]

Неассоциативные алгебры[править | править код]

Структурные коэффициенты[править | править код]

Умножение в алгебре над полем однозначно задаётся произведениями базисных векторов. Таким образом, для задания алгебры над полем достаточно указать её размерность и структурных коэффициентов , являющихся элементами поля. Эти коэффициенты определяются следующим образом:

где  — некоторый базис . Различные множества структурных коэффициентов могут соответствовать изоморфным алгебрам.

Если  — только коммутативное кольцо, а не поле, это описание возможно, только когда алгебра является свободным модулем.

См. также[править | править код]

Примечания[править | править код]

  1. Кузьмин Е. Н. Алгебра с делением

Литература[править | править код]

  • Скорняков Л. А., Шестаков И. П.  Глава III. Кольца и модули // Общая алгебра / Под общ. ред. Л. А. Скорнякова. — М.: Наука, 1990. — Т. 1. — С. 291—572. — 592 с. — (Справочная математическая библиотека). — 30 000 экз. — ISBN 5-02-014426-6.