Пространство Калаби — Яу

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Теория струн
Calabi-Yau.png
Теория суперструн
См. также: Портал:Физика

Пространство Калаби — Яу (многообразие Калаби — Яу) — компактное комплексное многообразие с кэлеровой метрикой, для которой тензор Риччи обращается в ноль.

Комплексное -мерное пространство Калаби — Яу является -мерным римановым многообразием с риччи-плоской метрикой и дополнительной симплектической структурой.

Названо по именам математиков Эудженио Калаби и Яу Шинтана.

Примеры и классификация[править | править вики-текст]

В одномерном случае любое пространство Калаби — Яу представляет собой тор , который рассматривается как эллиптическая кривая.

Все двумерные пространства Калаби — Яу представляют собой торы и так называемые K3-поверхности. Классификация в бо́льших размерностях не завершена, в том числе в важном трёхмерном случае.

Использование в теории струн[править | править вики-текст]

Двумерная проекция трехмерной визуализации пространства Калаби — Яу

В теории струн используются трёхмерные (имеющие вещественную размерность 6) многообразия Калаби — Яу, выступающие как слой компактификации пространства-времени, так что каждой точке четырёхмерного пространства-времени соответствует пространство Калаби — Яу.

Известно более чем 470 миллионов трёхмерных пространств Калаби — Яу[1], которые удовлетворяют требованиям к дополнительным измерениям, вытекающим из теории струн.

Одной из основных проблем теории струн (учитывая современное состояние разработки) является такая выборка из указанного удовлетворительного подмножества трёхмерных пространств Калаби — Яу, которая давала бы наиболее адекватное обоснование количества и состава семейств всех известных частиц. Феномен свободы выбора пространств Калаби — Яу и возникновение в этой связи в теории струн огромного количества ложных вакуумов известен как проблема ландшафта теории струн. При этом, если теоретические разработки в этой области приведут к выделению единственного пространства Калаби — Яу, удовлетворяющего всем требованиям для дополнительных измерений, это станет очень весомым аргументом в пользу истинности теории струн[2].

Примечания[править | править вики-текст]

  1. «Теория струн и скрытые измерения Вселенной» ISBN 978-0-465-02023-2
  2. Б. Грин Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории. Пер. с англ., Общ. ред. В. О. Малышенко, — М.: ЕдиториалУРСС, 2004. — 288 с. — ISBN 5-354-00161-7.

Литература[править | править вики-текст]