Биекция: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
В данном контексте лучше использовать слово подстановка
Строка 5: Строка 5:
Если между двумя множествами можно установить взаимно-однозначное соответствие (биекцию), то такие множества называются '''[[Мощность множества|равномощными]]'''. С точки зрения [[Теория множеств|теории множеств]], равномощные множества неразличимы.
Если между двумя множествами можно установить взаимно-однозначное соответствие (биекцию), то такие множества называются '''[[Мощность множества|равномощными]]'''. С точки зрения [[Теория множеств|теории множеств]], равномощные множества неразличимы.


Взаимно-однозначное отображение [[Конечное множество|конечного множества]] в себя называется [[перестановка|перестановкой]] (элементов этого множества).
Взаимно-однозначное отображение [[Конечное множество|конечного множества]] в себя называется [[Перестановка(или подстановка)|перестановкой]] (элементов этого множества).


== Определение ==
== Определение ==

Версия от 12:00, 22 января 2017

Биективная функция.

Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют ещё взаимно-однозначным отображением (соответствием), одно-однозначным отображением.

Если между двумя множествами можно установить взаимно-однозначное соответствие (биекцию), то такие множества называются равномощными. С точки зрения теории множеств, равномощные множества неразличимы.

Взаимно-однозначное отображение конечного множества в себя называется перестановкой (элементов этого множества).

Определение

Функция называется биекцией (и обозначается ), если она:

  1. Переводит разные элементы множества в разные элементы множества (инъективность). Иными словами,
    • .
  2. Любой элемент из имеет свой прообраз (сюръективность). Иными словами,
    • .


Примеры

  • Тождественное отображение  на множестве биективно.
  •  — биективные функции из в себя. Вообще, любой моном одной переменной нечетной степени является биекцией из в себя.
  •  — биективная функция из в .
  • не является биективной функцией, если считать её определённой на всём .

Свойства

Композиция инъекции и сюръекции, дающая биекцию.
  • Функция является биективной тогда и только тогда, когда существует обратная функция такая, что
и
  • Если функции и биективны, то и композиция функций биективна, в этом случае . Коротко: композиция биекций является биекцией. Обратное, однако, неверно: если биективна, то мы можем утверждать лишь, что инъективна, а сюръективна.

Применения

В информатике

Организация связи «один к одному» между таблицами реляционной БД на основе первичных ключей.

Примечания

См. также

Литература

  • Н. К. Верещагин, А. Шень. Часть 1. Начала теории множеств // Лекции по математической логике и теории алгоритмов. — 2-е изд., испр. — М.: МЦНМО, 2002. — 128 с.
  • Ершов Ю. Л., Палютин Е. А. . Математическая логика: Учебное пособие. — 3-е, стереотип. изд. — СПб.: Лань, 2004. — 336 с.