Нитробензол

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Нитробензол
Nitrobenzol.svg
Общие
Систематическое
наименование
Нитробензол
Традиционные названия мирабановое масло
Хим. формула C₆H₅NO₂
Физические свойства
Состояние жидкость
Молярная масса 123,06 г/моль
Плотность 1,199 г/см³
Термические свойства
Т. плав. 5,85 °C
Т. кип. 210,9 °C
Т. всп. 88 °C
Т. свспл. 482 °C
Уд. теплоёмк. 1510 Дж/(кг·К)
Химические свойства
Растворимость в воде 0,19 г/100 мл (20 °C)
Оптические свойства
Показатель преломления 1,5562
Структура
Дипольный момент 4,22 Д
Классификация
Рег. номер CAS 98-95-3
PubChem 7416
Рег. номер EINECS 202-716-0
SMILES
RTECS QJ0525000
ChemSpider 7138
Безопасность
ПДК 3 мг/м3
R-фразы R23/24/25, R40, R48/23/24, R51/53, R62
S-фразы (S1/2), S28, S36/37, S45, S61
NFPA 704
NFPA 704.svg
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иначе.

Нитробензол — токсичное органическое вещество, имеющее миндальный запах. Формула C6H5NO2.

Физические и химические свойства[править | править вики-текст]

Внешний вид нитробензола — ярко-желтые кристаллы или маслянистая жидкость (бесцветная или зеленовато-жёлтая) с запахом горького миндаля, нерастворимая в воде (0,19 % по массе при 297 K, 0,8 % при 350 K). Проявляет слабые основные свойства. Растворяется в концентрированных кислотах (при разведении таких растворов водой осаждается)[1]. Неограниченно смешивается с диэтиловым эфиром, бензолом, некоторыми другими органическими растворителями. Перегоняется с водяным паром. Показатель преломления (для D-линии натрия (589 нм), при 297K) 1,5562. Дипольный момент газообразных молекул (в дебаях) 4,22 D. Удельная теплоёмкость 1,51 Дж/(г·К)[2].

Электрофильное замещение[править | править вики-текст]

В связи с сильным электроноакцепторным действием нитрогруппы реакции электрофильного замещения идут в мета-положение и скорость реакции ниже чем у бензола.

\mathsf{C_6H_6 \xrightarrow[]{H_2SO_4, \ HNO_3} \ C_6H_5NO_2 + C_6H_4(NO_2)_2 + C_6H_3(NO_2)_3}

В присутствии катализаторов. Например, порошка железа[3]:

\mathsf{C_6H_6NO_2 \xrightarrow[]{Br_2, \ Fe} \ m\text{-}Br\text{-}C_6H_4\text{-}NO_2 + HBr}


Не вступает в реакцию Фриделя-Крафтса[4]


Нуклеофильное замещение[править | править вики-текст]

  •  :: \mathsf{C_6H_5NO_2 \xrightarrow[]{KOH, \ ^ot} \ o\text{-}HO\text{-}C_6H_4\text{-}NO_2 + p\text{-}HO\text{-}C_6H_4\text{-}NO_2}


\mathsf{C_6H_5NO_2 \xrightarrow[]{RMgBr} \ o\text{-}R\text{-}C_6H_4\text{-}NO + p\text{-}R\text{-}C_6H_4\text{-}NO}

Восстановление[править | править вики-текст]

Наиболее важной реакцией ароматических нитросоединений является восстановление их до первичных аминов.

Эта реакция была открыта в 1842 году Н. Н. Зининым, который впервые восстановил нитробензол до анилина действием сульфида аммония. В настоящее время для восстановления нитрогруппы в аренах до аминогруппы в промышленных условиях применяется каталитическое гидрирование. В качестве катализатора используют медь на силикагеле в качестве носителя. Катализатор готовят нанесением карбоната меди из суспензии в растворе силиката натрия и последующим восстановлением водородом при нагревании. Выход анилина над этим катализатором составляет 98 %.

Иногда в промышленном гидрировании нитробензола до анилина в качестве катализатора используют никель в комбинации с оксидами ванадия и алюминия. Такой катализатор эффективен в интервале 250—300° и легко регенерируется при окислении воздухом. Выход анилина и других аминов составляет 97—98 %. Восстановление нитросоединений до аминов может сопровождаться гидрированием бензольного кольца. По этой причине для получения ароматических аминов избегают использовать в качестве катализаторов платину, палладий или никель Ренея.

В промышленности анилин получают каталитическим восстановлением нитробензола на медном или никелевом катализаторе, который вытеснил старинный способ восстановления нитробензола чугунными стружками в водном растворе хлорного железа и соляной кислоты. Промежуточные продукты — нитрозобензол и N-фенилгидроксиламин.


Другой вариант получения нитрозобензола[3]:

\mathsf{C_6H_5NO_2 \xrightarrow[]{Zn \ NH_4Cl} \ C_6H_5\text{-}NH\text{-}OH \xrightarrow[]{Na_2Cr_2O_7 \ H_2SO_4} \ C_6H_5\text{-}NO}


Восстановление нитрогруппы до аминогруппы сульфидом и гидросульфидом натрия в настоящее время имеет значение только для частичного восстановления одной из двух нитрогрупп, например, в м-динитробензоле или 2,4-динитроанилине.

При ступенчатом восстановлении полинитросоединений с помощью сульфида натрия этот неорганический реагент превращается в тетрасульфид натрия, что сопровождается образованием щелочи.

Высокая щелочность среды приводит к образованию азокси- и азо- и гидразосоединений в качестве побочных продуктов. Для того чтобы избежать этого в качестве восстановителя следует использовать гидросульфид натрия, где щелочь не образуется.


Азоксибензол может быть получен восстановлением нитробензола: спиртовым раствором едкого кали, амальгамой натрия, водородом в присутствии окиси свинца, метиловым спиртом и едким натром, метилатом натрия и метиловым спиртом, закисью свинца в щелочной суспензии, декстрозой в щелочной суспензии, β-фенилгидроксиламином.[3].


Азобензол можно получить, например, восстановлением нитробензола при кипячении с цинковой пылью в водно-спиртовом растворе щёлочи[3].


Многие более восстановленные производные могут быть получены электрохимически, при правильном подборе электродов.


Известны методы восстановления нитросоединений до амидов (амальгамами натрия или цинка, сульфидами натрия и аммония)[5].

Получение[править | править вики-текст]

Основной способ получения нитробензола (как и других нитроаренов) — нитрование в условиях электрофильного замещения бензола (соответственно, аренов)[1]. Электрофильной частицей является ион нитрония NO2+[5][6].

Например, в промышленности нитробензол получают непрерывным нитрованием бензола смесью концентрированных H2SO4 и HNO3 с выходом 96—99 %.

В лабораторных условиях нитробензол получают нитрованием бензола смесью H2SO4 (1,84 г/см3) и HNO3 (1,4 г/см3) в соотношении 1:1 при 40—60 °C (45 мин). Выход целевого продукта достигает 80 %.

Принципиально возможна (но не применяется в силу низкого выхода) реакция нитрования бензола концентрированной азотной кислотой[5].


Несколько реже (как и для получения других нитроаренов) в лабораториях используют замещение, модификацию или элиминирование заместителей, уже имеющихся при бензольном кольце[1].

Например, возможно получать нитробензол окислением анилина перокситрифторуксусной кислотой (или другими окислителями; чем менее кислая среда — тем больше доля азоксибензола в продуктах)[6].

Применение[править | править вики-текст]

Исходное сырьё в производстве анилина, ароматических азотсодержащих соединений (бензидин, хинолин, азобензол), растворитель эфиров целлюлозы[4], компонент полировальных составов для металлов. Применяется как растворитель и мягкий окислитель. В основном используется как прекурсор для производства анилина.

Производные нитробензола используются в качестве взрывчатых веществ и как компоненты ракетных топлив. В парфюмерии — в качестве душистых или фиксирующих запах веществ, в том числе — искусственных мускусов. Сам нитробензол ранее выпускали под названием «горько-миндального» или «мирбанового» масла. Некоторые производные нитробензола используются в составе лаков и красок. Некоторые применяются в медицине[5] [1].

Токсичность[править | править вики-текст]

Впитывается через кожу, оказывает сильное действие на ЦНС, нарушает обмен веществ, вызывает заболевания печени, окисляет гемоглобин в метгемоглобин.

Ссылки[править | править вики-текст]

Литература[править | править вики-текст]

  • Кнунянц И. Л. и др. т.3 Мед-Пол // Химическая энциклопедия. — М.: Большая Российская Энциклопедия, 1992. — 639 с. — 50 000 экз. — ISBN 5-85270-039-8.

Примечания[править | править вики-текст]

  1. 1 2 3 4 5 Шабаров Ю. С. «Органическая химия», М.:Химия, 2002, стр. 848. ISBN 5-7245-1218-1, стр. 715—725
  2. Волков А. И. Жарский И. М. «Большой химический справочник». Мн.:Современная школа, 2005, 608 с. ISBN 985-6751-04-7 стр. 257, 267
  3. 1 2 3 4 Гельман Х. (ред.) Казанский Б. А. (ред.) «Синтезы органических препаратов», М.: Гос. Изд-во иностранной литературы, 1949. Сб. 1, стр. 130—134. Сб. 2, стр. 12-15. Сб. 3, стр. 7-8, 354—356
  4. 1 2 Кнунянц И. Л. (глав.ред.) «Химическая энциклопедия» в пяти томах. М.:Советская энциклопедия, 1988. Т.3, стр. 267—268
  5. 1 2 3 4 Горленко В. А. и др. «Органическая химия», М.:Мастерство, 2003, стр. 624. ISBN 5-294-00176-4, стр. 397—403
  6. 1 2 Бартон Д, Оллис Д.(ред.) «Общая органическая химия» в 12 т., М.:Химия, 1982. Т.3, стр. 403—410