Построение с помощью циркуля и линейки

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Построения с помощью циркуля и линейки — раздел евклидовой геометрии, известный с античных времён. В задачах на построение циркуль и линейка считаются идеальными инструментами, в частности:

  • Линейка не имеет делений и имеет сторону бесконечной длины, но только одну.
  • Циркуль может иметь сколь угодно большой или сколь угодно малый раствор (то есть может чертить окружность произвольного радиуса).

Пример[править | править вики-текст]

Разбиение отрезка пополам

Задача на бисекцию. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружности с центром в точках A и B радиусом AB.
  • Находим точки пересечения P и Q двух построенных окружностей (дуг).
  • По линейке проводим отрезок или линию, проходящую через точки P и Q.
  • Находим искомую середину отрезка AB — точку пересечения AB и PQ.

Формальное определение[править | править вики-текст]

В задачах на построение рассматриваются множество всех точек плоскости, множество всех прямых плоскости и множество всех окружностей плоскости, над которыми допускаются следующие операции:

  1. Выделить точку из множества всех точек:
    1. произвольную точку
    2. произвольную точку на заданной прямой
    3. произвольную точку на заданной окружности
    4. точку пересечения двух заданных прямых
    5. точки пересечения/касания заданной прямой и заданной окружности
    6. точки пересечения/касания двух заданных окружностей
  2. «С помощью линейки» выделить прямую из множества всех прямых:
    1. произвольную прямую
    2. произвольную прямую, проходящую через заданную точку
    3. прямую, проходящую через две заданных точки
  3. «С помощью циркуля» выделить окружность из множества всех окружностей:
    1. произвольную окружность
    2. произвольную окружность с центром в заданной точке
    3. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками
    4. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками

В условиях задачи задается некоторое множество точек. Требуется с помощью конечного количества операций из числа перечисленных выше допустимых операций построить другое множество точек, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи[править | править вики-текст]

  • Задача Аполлония о построении окружности, касающейся трех заданных окружностей. Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений.
  • Задача Брахмагупты о построении вписанного четырехугольника по четырем его сторонам.

Построение правильных многоугольников[править | править вики-текст]

Построение правильного пятиугольника

Античным геометрам были известны способы построения правильных n-угольников для n=2^k\,\!, n=3\cdot 2^k, n=5\cdot 2^k и n=3\cdot5\cdot2^k.

В 1796 году Гаусс показал возможность построения правильных n-угольников при n=2^k\cdot p_1\cdots p_m, где p_i\,\! — различные простые числа Ферма. В 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

Неразрешимые задачи[править | править вики-текст]

Следующие три задачи на построение были поставлены ещё в античности:

Лишь в XIX веке было доказано, что все три задачи неразрешимы при использовании только циркуля и линейки. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.

  • Другая известная неразрешимая с помощью циркуля и линейки задача — построение треугольника по трём заданным длинам биссектрис.[1] Причём эта задача остаётся неразрешимой даже при наличии трисектора.[2]

Возможные и невозможные построения[править | править вики-текст]

Все построения являются ничем иным, как решениями какого-либо уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа. В рамках вышеописанных требований возможны следующие построения:

Иначе говоря, возможно построить лишь числа равные арифметическим выражениям с использованием квадратного корня из исходных чисел (длин отрезков). Например,

  • Если задан только отрезок длины 1, то \sqrt[3]{2} невозможно представить в таком виде (отсюда невозможность удвоения куба).
  • Возможность построить правильный 17-угольник следует из выражения на косинус угла:
    \cos{\left(\frac{2\pi}{17}\right)} = -\frac{1}{16} \; + \; \frac{1}{16} \sqrt{17} \;+\; \frac{1}{16} \sqrt{34 - 2 \sqrt{17}} \;+\; \frac{1}{8} \sqrt{ 17 + 3 \sqrt{17} - \sqrt{34 - 2 \sqrt{17}} - 2 \sqrt{34 + 2 \sqrt{17}} }

Вариации и обобщения[править | править вики-текст]

  • Построения с помощью одного циркуля. По теореме Мора — Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
  • Построения с помощью одной линейки. Легко заметить, что с помощью одной линейки можно проводить только проективно-инвариантные построения. В частности,
    • невозможно даже разбить отрезок на две равные части,
    • также невозможно найти центр данной окружности.
Однако
    • при наличии на плоскости заранее проведённой окружности с отмеченным центром с одной линейкой можно провести те же построения, что и циркулем и линейкой (Теорема Штейнера — Понселе).
    • Если на линейке есть две засечки, то построения с помощью неё эквивалентны построениям с помощью циркуля и линейки (важный шаг в доказательстве этого сделал Наполеон).
  • Построения с помощью инструментов с ограниченными возможностями. В задачах такого рода инструменты (в противоположность классической постановке задачи) считаются не идеальными, а ограниченными: прямую через две точки с помощью линейки можно провести только при условии, что расстояние между этими точками не превышает некоторой величины; радиус окружностей, проводимых с помощью циркуля, может быть ограничен сверху, снизу или одновременно и сверху, и снизу.
  • Построения с помощью плоского оригами. см. правила Худзита

Интересные факты[править | править вики-текст]

  • Узор на флаге Ирана описывается как построение с помощью циркуля и линейки[3].

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

eo:Geometrio#Klasikaj problemoj