Антоцианы

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Керацианин — рутинозил-3-цианидин, антоциан, содержащийся в костянках вишен (Cerasus).

Антоцианы (от греч. ἄνθος — цветок и греч. κυανός — синий, лазоревый) — окрашенные растительные гликозиды, содержащие в качестве агликона антоцианидины — замещенные 2-фенилхромены, относящиеся к флавоноидам.

Строение и свойства[править | править исходный текст]

Антоцианы являются гликозидами, содержащими в качестве агликона-антоцианидина гидрокси- и метоксизамещённые соли флавилия (2-фенилхроменилия), у некоторых антоцианов гидроксилы ацетилированы. Углеводная часть связана с агликоном обычно в положении 3, у некоторых антоцианов — в положениях 3 и 5, при этом в роли углеводного остатка могут выступать как моносахариды глюкоза, рамноза, галактоза, так и ди- и трисахариды.

Будучи пирилиевыми солями, антоцианы легко растворимы в воде и полярных растворителях, малорастворимы в спирте и нерастворимы в неполярных растворителях.

Общая структура антоцианов
Антоцианы R1 R2 R3 R4 R5 R6 R7
Аурантинидин -H -OH -H -OH -OH -OH -OH
Цианидин -OH -OH -H -OH -OH -H -OH
Дельфинидин -OH -OH -OH -OH -OH -H -OH
Европинидин -OCH3 -OH -OH -OH -OCH3 -H -OH
Лютеолинидин -OH -OH -H -H -OH -H -OH
Пеларгонидин -H -OH -H -OH -OH -H -OH
Мальвидин -OCH3 -OH -OCH3 -OH -OH -H -OH
Пеонидин -OCH3 -OH -H -OH -OH -H -OH
Петунидин -OH -OH -OCH3 -OH -OH -H -OH
Розинидин -OCH3 -OH -H -OH -OH -H -OCH3

Строение антоцианов установлено в 1913 немецким биохимиком Р. Вильштеттером, первый химический синтез антоцианов осуществлен в 1928 английским химиком Р. Робинсоном.

Антоцианы и антоцианидины обычно выделяются из кислых экстрактов растительных тканей при умеренно невысоких значениях pH, в этом случае агликоновая антоцианиновая часть антоциана либо антоцианин существуют в форме флавилиевой соли, в которой электрон гетероциклического атома кислорода участвует в гетероароматической π-системе бензпирилиевого (хроменилиевого) цикла, который и является хромофором, обуславливающем окраску этих соединений — в группе флавоноидов они являются наиболее глубоко окрашенными соединениями с наибольшим сдвигом максимума поглощения в длинноволновую область.

На окраску антоцианидинов влияет число и природа заместителей: гидроксильные группы, несущие свободные электронные пары обуславливают батохромный сдвиг при увеличении их числа. Так, например, пеларгонидин, цианидин и дельфинидин, несущие в 2-фенильном кольце, соответственно, одну, две и три гидроксильные группы, окрашены в оранжевый, красный и пурпурный цвета. Гликозилирование, метилирование или ацилирование гидроксильных групп антоцианидинов приводит к уменьшению или исчезновению батохромного эффекта.

В силу высокой электрофильности хроменилиевого цикла структура и, соответственно, окраска антоцианов и антоцианидинов обуславливается их чувствительностью к pH: в кислой среде (pH < 3) антоцианы (и антоцианидины) существуют в виде пирилиевых солей, при повышении pH до ~4-5 происходит присоединение гидроксид-иона с образованием бесцветного псевдооснования, при дальнейшем повышении pH до ~6-7 происходит отщепление воды с образованием хиноидной формы, которая, в свою очередь, при pH ~7-8 отщепляет протон с образованием фенолята, и, наконец, при pH выше 8 фенолят хиноидной формы гидролизуется с разрывом хроменового цикла и образованием соответствующего халкона:

Зависимость структуры и цвета антоцианов от pH среды: 1. Красная пирилиевая соль; 2. Бесцветное псевдооснование; 3. Синяя хиноидная форма; 4. Пурпурный фенолят хиноидной формы; 5. Жёлтый халкон

Образование комплексов с катионами металлов также влияет на окраску, одновалентный катион К+ даёт пурпурные комплексы, двухвалентные Mg2+ и Ca2+ — синие, на цвет также может влиять адсорбция на полисахаридах.

Антоцианы гидролизуются до антоцианидинов в 10 % соляной кислоте, сами антоцианидины устойчивы при низких значениях pH и разлагаются при высоких.

Биосинтез и функции[править | править исходный текст]

Синтезируются данные соединения в цитоплазме и депонируются в клеточные вакуоли при помощи глутатионового насоса. Антоцианы обнаружены в специальных везикулах — антоцианопластах, хлоропластах, а также в кристаллическом виде в плазме некоторых видов лука и клеточном соке плодов апельсина .

Общеизвестный факт активации биосинтеза антоцианов у растений в стрессовых условиях еще не получил глубокого физиолого-биохимического обоснования. Возможно, что антоцианы не несут никакой функциональной нагрузки, а синтезируются как конечный продукт насыщенного флавоноидного пути, получившего вакуолярное ответвление с целью конечного депонирования ненужных растению фенольных соединений. С другой стороны, антоциановая индукция, вызванная опредёленными факторами окружающей среды, а также предсказуемость появления антоцианинов из года в год в периоды специфических этапов развития листа, их яркая выраженность в особых экологических нишах, возможно, способствуют адаптации растительных организмов к тем или иным стрессовым условиям.

Распространение в природе[править | править исходный текст]

Красный цвет кожицы яблок сорта Fuji

Антоцианы очень часто определяют цвет лепестков цветков, плодов и осенних листьев. Они обычно придают фиолетовую, синюю, коричневую, красную, оранжевую окраску. Эта окраска нередко зависит от pH клеточного содержимого, и потому может меняться при созревании плодов, отцветании цветков — процессах, сопровождающихся закислением клеточного содержимого.

Многие антоцианы достаточно хорошо растворимы, например, при экстракции виноградного сока из кожуры плодов они переходят в красные вина (см. цвет бордо).

К наиболее распространённым антоцианам относится Цианидин.

Цвета осенних листьев[править | править исходный текст]

Растения с повышенной концентрацией антоцианов популярны в ландшафтном дизайне — например, селектированные пурпурные культивары европейского бука

Многие популярные книги неточно указывают на то, что цвет осенних листьев (включая красный цвет) — просто результат разрушения зелёного хлорофилла, который маскировал уже имевшиеся жёлтые, оранжевые и красные пигменты (каротиноид, ксантофилл и антоциан, соответственно). И если для каротиноидов и ксантофиллов это действительно так, то антоцианы не присутствуют в листьях до тех пор, пока в листьях не начнёт снижаться уровень хлорофиллов. Именно тогда растения начинают синтезировать антоцианы, вероятно для фотозащиты в процессе перемещения азота.

Применение[править | править исходный текст]

Антоцианы рассматривают как вторичные метаболиты. Они разрешены в качестве пищевых добавок (E163).

Богаты антоцианами такие растения, как, например, черника, клюква, малина, ежевика, чёрная смородина, вишня, баклажаны, чёрный рис, виноград Конкорд и мускатный виноград, красная капуста, и некоторые виды перцев, как жгучих, так и т. н. сладких. В медицине широко применяются антоцианы черники (в составе экстракта черники). В жгучих перцах также замечено несколько видов, у которых антоциан присутствует не только в плодах, но и в листьях. Причем, в данном случае, антоциан синтезируется тем больше, чем ярче солнечный свет, падающий на растение. К таким перцам можно отнести Black Pearl (Черная Жемчужина), Pimenta da Neyde и другие. Но в Черной Жемчужине созревший плод полностью лишается антоциана, и плод-ягода краснеет, а у Pimenta da Neyde плод-стручок на солнце всегда остается темным.

Литература[править | править исходный текст]

См. также[править | править исходный текст]