Топливный элемент

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне[1] — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.

Топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения. Это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию.

Естественным топливным элементом является митохондрия живой клетки. Митохондрии перерабатывают органическое «горючее» — пируваты и жирные кислоты, синтезируя АТФ — универсальный источник энергии для всех биохимических процессов в живых организмах, одновременно создавая разность электрических потенциалов на своей внешней мембране. Однако копирование этого процесса для получения электроэнергии в промышленных масштабах лишено смысла, так как на долю электрической разности потенциалов приходится ничтожная доля химической энергии исходных веществ: почти вся энергия передаётся молекулам АТФ.

Устройство ТЭ[править | править вики-текст]

Топливные элементы — это электрохимические устройства, которые теоретически могут иметь очень высокий коэффициент преобразования химической энергии в электрическую (~80 %)[источник не указан 1721 день].

КПД, определённый по теплоте химической реакции, может быть и выше 100 % из-за того, что в работу может превращаться и теплота окружающей среды[2]. Здесь тем не менее нет никакого противоречия с ограничениями на КПД тепловых машин, поскольку топливные элементы не работают по замкнутому циклу и реагирующие вещества не возвращаются в начальное состояние. При химической реакции в топливном элементе в электрическую энергию превращается в конечном счёте не теплота реагентов, а их внутренняя энергия и, возможно, некоторое количество теплоты из окружающей среды.

Принцип разделения потоков горючего и окислителя[править | править вики-текст]

Обычно в низкотемпературных топливных элементах используются: водород со стороны анода и кислород на стороне катода (водородный элемент) или метанол и кислород воздуха. В отличие от топливных элементов, одноразовые гальванические элементы и аккумуляторы содержат расходуемые твёрдые или жидкие реагенты, масса которых ограничена объёмом батарей, и, когда электрохимическая реакция прекращается, они должны быть заменены на новые либо электрически перезаряжены, чтобы запустить обратную химическую реакцию, или по крайней мере в них нужно поменять израсходованные электроды и загрязнённый электролит. В топливном элементе реагенты втекают, продукты реакции вытекают, и реакция может протекать так долго, как поступают в неё реагенты и сохраняется реакционная способность компонентов самого топливного элемента, чаще всего определяемая их «отравлением» побочными продуктами недостаточно чистых исходных веществ.

Пример водородно-кислородного топливного элемента[править | править вики-текст]

Водородно-кислородный топливный элемент с протонообменной мембраной (например, «с полимерным электролитом») содержит протонопроводящую полимерную мембрану, которая разделяет два электрода — анод и катод. Каждый электрод обычно представляет собой угольную пластину (матрицу) с нанесённым катализатором — платиной или сплавом платиноидов и др. композиции.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.

На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Топливные элементы не могут хранить электрическую энергию, как гальванические или аккумуляторные батареи, но для некоторых применений, таких как работающие изолированно от электрической системы электростанции, использующие непостоянные источники энергии (солнце, ветер), они совместно с электролизёрами, компрессорами и ёмкостями для хранения топлива (например, баллоны для водорода) образуют устройство для хранения энергии. Общий КПД такой установки (преобразование электрической энергии в водород и обратно в электрическую энергию) 30-40 %.[источник не указан 1360 дней]

Мембрана[править | править вики-текст]

Мембрана обеспечивает проводимость протонов, но не электронов. Она может быть полимерной (Нафион (Nafion), полибензимидазол и др.) или керамической (оксидной и др.). Впрочем, существуют ТЭ и без мембраны[3].

Анодные материалы и катализаторы[править | править вики-текст]

Анод- положительно заряженный электрод.

Катодные материалы и катализаторы[править | править вики-текст]

Катод- отрицательно заряженный электрод.

Типы топливных элементов[править | править вики-текст]

Метанольный топливный элемент в Mercedes Benz Necar 2

Основные типы топливных элементов[4]

Тип топливного элемента Реакция на аноде Электролит Реакция на катоде Температура, °С
Щелочной ТЭ (англ. Alkaline fuel cells — AFC) 2H2 + 4OH- → 2H2O + 4e- Раствор КОН O2 + 2H2O + 4e- → 4OH- 200
ТЭ с протонно-обменной мембраной (англ. Proton-exchange membrane fuel cell — PEMFC) 2H2 → 4H+ + 4e- Протонно-обменная мембрана O2 + 4H+ + 4e- → 2H2O 80
Метанольный ТЭ (англ. Direct-methanol fuel cell — DMFC) 2CH3OH + 2H2O → 2CO2 + 12H+ + 12e- Протонно-обменная мембрана 3O2 + 12H+ + 12e- → 6H2O 60
ТЭ на основе ортофосфорной кислоты (англ. Phosphoric-acid fuel cells — PAFC) 2H2 → 4H+ + 4e- Раствор фосфорной кислоты O2 + 4H+ + 4e- → 2H2O 200
ТЭ на основе расплавленного карбоната (англ. Molten-carbonate fuel cells — MCFC) 2H2 + 2CO32- → 2H2O + 2CO2 + 4e- Расплавленный карбонат O2 + 2CO2 + 4e- → 2CO32- 650
Твердотельный оксидный ТЭ (англ. Solid-oxide fuel cells — SOFC) 2H2 + 2O2- → 2H2O + 4e- Смесь оксидов O2 + 4e- → 2O2- 1000

История[править | править вики-текст]

Первые открытия[править | править вики-текст]

Принцип действия топливных элементов был открыт в 1839 г. английским ученым У. Гроувом, который обнаружил, что процесс электролиза обратим, то есть водород и кислород можно объединить в молекулы воды без горения, но с выделением тепла и электричества[5]. Свой прибор, где удалось провести эту реакцию, ученый назвал "газовой батареей", и это был первый топливный элемент. Однако в последующие 100 лет эта идея не нашла практического применения.

В 1937 г. профессор Ф.Бэкон начал работы над своим топливным элементом. К концу 1950-х он разработал батарею из 40 топливных элементов, имеющую мощность 5 кВт. Такую батарею можно было применить для обеспечения энергией сварочного аппарата или грузоподъемника[6]. Батарея работала при высоких температурах порядка 200°С и более и давлениях 20-40 бар. Кроме того, она была весьма массивна.

История исследований в СССР и России[править | править вики-текст]

В СССР первые публикации о топливных элементах появились в 1941 году.

Первые исследования начались в 60-х годах. РКК «Энергия»1966 года) разрабатывала PAFC элементы для советской лунной программы. С 1987 года по 2005 «Энергия» произвела около 100 топливных элементов, которые наработали суммарно около 80000 часов.

Во время работ над программой «Буран», исследовались щелочные AFC элементы. На «Буране» были установлены 10 кВт топливные элементы.

В 70-80 годы «Квант» совместно с рижским автобусным заводом «РАФ» разрабатывали щелочные элементы для автобусов. Прототип автобуса на топливных элементах был изготовлен в 1982 году.

В 1989 году «Институт высокотемпературной электрохимии» (Екатеринбург) произвёл первую SOFC установку мощностью 1 кВт.

В 1999 году АвтоВАЗ начал работы с топливными элементами. К 2003 году на базе автомобиля ВАЗ-2131 было создано несколько опытных экземпляров. В моторном отсеке автомобиля располагались батареи топливных элементов, а баки со сжатым водородом в багажном отделении, то есть была применена классическая схема расположения силового агрегата и топливных баков-баллонов. Разработками водородного автомобиля руководил кандидат технических наук Мирзоев Г. К.

10 ноября 2003 года было подписано[7] Генеральное соглашение о сотрудничестве между Российской академией наук и компанией «Норильский никель» в области водородной энергетики и топливных элементов. Это привело к учреждению[8] 4 мая 2005 года Национальной инновационной компании «Новые энергетические проекты» (НИК НЭП), которая в 2006 году произвела резервную энергетическую установку на основе ТЭ с твёрдым полимерным электролитом мощностью 1 кВт. По сообщению Информационного агентства «МФД-ИнфоЦентр», ГМК «Норильский никель» ликвидирует[9] компанию «Новые энергетические проекты» в рамках объявленного в начале 2009 года решения избавляться от непрофильных и убыточных активов.

Над созданием образцов электростанций на топливных элементах работают Газпром и федеральные ядерные центры РФ. Твердооксидные топливные элементы, разработка которых сейчас активно ведётся, появятся, видимо, в 20102015 годах.

Применение топливных элементов[править | править вики-текст]

Полная статья Водородная энергетика.

Топливные элементы первоначально применялись только в космической отрасли, однако в настоящее время сфера их применения непрерывно расширяется. Их применяют в стационарных электростанциях, в качестве автономных источников тепло- и электроснабжения зданий, в двигателях транспортных средств, в качестве источников питания ноутбуков и мобильных телефонов. Часть этих устройств пока не покинула стен лабораторий, другие уже коммерчески доступны и давно применяются.

Примеры применения топливных элементов[4]

Область применения Мощность Примеры использования
Стационарные установки 5-250 кВт и выше Автономные источники тепло- и электроснабжения жилых, общественных и промышленных зданий, источники бесперебойного питания, резервные и аварийные источники электроснабжения
Портативные установки 1-50 кВт Дорожные указатели, грузовые и железнодорожные рефрижераторы, инвалидные коляски, тележки для гольфа, космические корабли и спутники
Транспорт 25-150 кВт Автомобили и другие транспортные средства, военные корабли и подводные лодки
Портативные устройства 1-500 Вт Мобильные телефоны, ноутбуки, карманные компьютеры, различные бытовые электронные устройства, современные военные приборы

Широко используются высокомощные энергетические установки на базе топливных элементов. В основном такие установки работают на основе элементов на базе расплавленных карбонатов, фосфорной кислоты и твердых оксидов. Как правило, такие установки используют не только для выработки электроэнергии, но и для получения тепла. Основные производители – это компании «UTC», «Fuel Cell Energy», «Siemens Westinghouse» и «Ballard».

Большие усилия прилагаются для разработки гибридных установок, в которых высокотемпературные топливные элементы комбинируются с газовыми турбинами. КПД таких установок может достигать 74,6% при усовершенствовании газовых турбин.

Маломощные установки также активно выпускаются. Основной производитель – японская компания «Ebara», дочерняя компания канадской фирмы «Ballard». Компания выпускает установки мощностью 1 кВт. Похожую установку на базе фосфорно-кислотных топливных элементов выпускает другая японская компания «Fuji Electric». Более мощную установку на 4,6 кВт представила на рынок компания «Valliant Group». Она вырабатывает не только электрическую, но и тепловую энергию (11 кВт).

Основными разработчиками портативных источников питания на базе микротопливных твердополимерных элементов являются компании «Medis Technologies» (ИзраильСША), «Angstrom Power» (Канада), «Hitachi Maxell» (Япония), «DoCoMo – Aquafairy» (Япония), «Neah Power Systems» (США), «СEA» (Франция), «Fraunhofer Institut» (Германия). Среди российских компаний, занимающихся разработкой аналогичных источников питания, следует упомянуть ассоциацию «Аспект».

Преимущества водородных топливных элементов[править | править вики-текст]

Топливные элементы обладают рядом ценных качеств, среди которых

Высокий КПД[править | править вики-текст]

  • У топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).
  • Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в обычных генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 53 %, чаще же составляет порядка 35-38 %. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80 %[10].
  • КПД почти не зависит от коэффициента загрузки.

Экологичность[править | править вики-текст]

В воздух выделяется лишь водяной пар, который не наносит вреда окружающей среде.

Компактные размеры[править | править вики-текст]

Топливные элементы легче и имеют меньшие размеры, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях. Например, солдат армии США носит 22 различных типа аккумуляторных батарей. [источник не указан 1443 дня] Средняя мощность батареи 20 ватт. Применение топливных элементов позволит сократить затраты на логистику, снизить вес, продлить время действия приборов и оборудования.

Проблемы топливных элементов[править | править вики-текст]

Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры. Возникает проблема «курицы и яйца» — зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта?

Большинство элементов при работе выделяют то или иное количество тепла. Это требует создания сложных технических устройств для утилизации тепла (паровые турбины и пр.), а также организации потоков топлива и окислителя, систем управления отбираемой мощностью, долговечности мембран, отравления катализаторов некоторыми побочными продуктами окисления топлива и других задач. Но при этом же высокая температура процесса позволяет производить тепловую энергию, что существенно увеличивает КПД энергетической установки.

Проблема отравления катализатора и долговечности мембраны решается созданием элемента с механизмами самовосстановления — регенерация ферментов-катализаторов[источник не указан 1178 дней].

Топливные элементы, в силу низкой скорости химических реакций, обладают значительной[источник не указан 1360 дней] инертностью и для работы в условиях пиковых или импульсных нагрузок требуют определённого запаса мощности или применения других технических решений (суперконденсаторы, аккумуляторные батареи).

Также существует проблема получения водорода и хранения водорода. Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора, во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.

Из простых химических элементов водород и углерод являются крайностями. У водорода самая большая удельная теплота сгорания, но очень низкая плотность и высокая химическая активность. У углерода самая высокая удельная теплота сгорания среди твёрдых элементов, достаточно высокая плотность, но низкая химическая активность из-за энергии активации. Золотая середина — углевод (сахар) или его производные (этанол) или углеводороды (жидкие и твёрдые). Выделяемый углекислый газ должен участвовать в общем цикле дыхания планеты, не превышая предельно допустимых концентраций.

Существует множество способов производства водорода, но в настоящее время около 50 % водорода, производимого во всём мире, получают из природного газа. Все остальные способы пока очень дорогостоящие. Очевидно, что при неизменном балансе первичных энергоносителей, с ростом потребностей в водороде как в массовом топливе и развитию устойчивости потребителей к загрязнениям, рост производства будет расти именно за счёт этой доли, а с наработкой инфраструктуры, позволяющей иметь его в доступности, более дорогие (но более удобные в некоторых ситуациях) способы будут отмирать. Прочие способы, в которые водород вовлечён в качестве вторичного энергоносителя, неизбежно нивелируют его роль от топлива до своего рода химического аккумулятора. Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт из-за этого неизбежно. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается (см. Ветроэнергетика, Производство водорода). Например, средняя цена электроэнергии в США выросла в 2007 г. до $0,09 за кВт·ч, тогда как себестоимость электроэнергии, произведённой из ветра, составляет $0,04—$0,07 (см. Ветроэнергетика или AWEA). В Японии киловатт-час электроэнергии стоит около $0,2, что сопоставимо со стоимостью электроэнергии, произведённой фотоэлектрическими элементами. Учитывая территориальную удалённость некоторых перспективных областей (например, транспортировать полученную фотоэлектрическими станциями электроэнергию из Африки напрямую, по проводам, явно бесперспективно, несмотря на её огромный энергетический потенциал в этом плане), даже работа водорода как «химического аккумулятора» может быть вполне рентабельной. По данным на 2010 г. стоимость энергии водородного топливного элемента должна подешеветь в восемь раз, чтобы стать конкурентноспособной с энергией, производимой тепловыми и атомными электростанциями[4].

К сожалению, в водороде, произведённом из природного газа, будет присутствовать СО и сероводород, отравляющие катализатор. Поэтому для уменьшения отравления катализатора необходимо повысить температуру топливного элемента. Уже при температуре 160 °C в топливе может присутствовать 1 % СО.

К недостаткам топливных элементов с платиновыми катализаторами можно отнести высокую стоимость платины, сложности с очисткой водорода от вышеупомянутых примесей, и как следствие, дороговизну газа, ограниченный ресурс элемента вследствие отравления катализатора примесями. Кроме того, платина для катализатора — невозобновляемый ресурс. Считается, что её запасов хватит на 15—20 лет производства элементов[11].

В качестве альтернативы платиновым катализаторам исследуется возможность применения ферментов. Ферменты являются возобновляемым материалом, они дёшевы, не отравляются основными примесями в дешёвом топливе. Обладают специфическими преимуществами[11]. Нечувствительность ферментов к СО и сероводороду сделала возможным получение водорода из биологических источников, например, при конверсии органических отходов.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. ГОСТ 15596-82 Источники тока химические. Термины и определения
  2. И. П. Базаров. Термодинамика, М., 1983.
  3. http://www.membrana.ru/lenta/?4431 Изобретён топливный элемент без мембраны
  4. 1 2 3 Под ред. В.А.Мошникова и Е.И.Терукова. Основы водородной энергетики.. — СПб.: Изд-во СПбГЭТУ «Лэти»., 2010. — 288 с. — ISBN 978-5-7629-1096-5.
  5. J. Larmini, А. Dicks. Fuel cell systems explained. Second edition.. — John Willey & Sons, Ltd., 2003. — 406 с.
  6. V.S. Bagotsky. Fuel Cells: Problems and Solutions.. — NJ: Wiley., 2009. — 320 с.
  7. http://isjaee.hydrogen.ru/pdf/02_07_NIK%20NEP.pdf
  8. «Новые энергетические проекты» оценили водородные разработки томского политеха. REGNUM (20 июня 2005). Проверено 14 августа 2010. Архивировано из первоисточника 25 августа 2011.
  9. «Норникель» ликвидирует компанию «Новые энергетические проекты» | Финансовые новости на MFD.RU
  10. Топливный элемент на alldc.ru
  11. 1 2 Патент РФ RU2229515 Водород-кислородный топливный элемент на основе иммобилизованных ферментов
10.Водородные топливные элементы и его удивительные функции

Ссылки[править | править вики-текст]