Алюминий

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
13 МагнийАлюминийКремний
B

Al

Ga
Водород Гелий Литий Бериллий Бор Углерод Азот Кислород Фтор Неон Натрий Магний Алюминий Кремний Фосфор Сера Хлор Аргон Калий Кальций Скандий Титан Ванадий Хром Марганец Железо Кобальт Никель Медь Цинк Галлий Германий Мышьяк Селен Бром Криптон Рубидий Стронций Иттрий Цирконий Ниобий Молибден Технеций Рутений Родий Палладий Серебро Кадмий Индий Олово Сурьма Теллур Иод Ксенон Цезий Барий Лантан Церий Празеодим Неодим Прометий Самарий Европий Гадолиний Тербий Диспрозий Гольмий Эрбий Тулий Иттербий Лютеций Гафний Тантал Вольфрам Рений Осмий Иридий Платина Золото Ртуть Таллий Свинец Висмут Полоний Астат Радон Франций Радий Актиний Торий Протактиний Уран Нептуний Плутоний Америций Кюрий Берклий Калифорний Эйнштейний Фермий Менделевий Нобелий Лоуренсий Резерфордий Дубний Сиборгий Борий Хассий Мейтнерий Дармштадтий Рентгений Коперниций Унунтрий Флеровий Унунпентий Ливерморий Унунсептий УнуноктийПериодическая система элементов
13Al
Cubic-face-centered.svg
Electron shell 013 Aluminium.svg
Внешний вид простого вещества
Алюминий
Мягкий, лёгкий и пластичный металл серебристо-белого цвета.
Свойства атома
Название, символ, номер

Алюминий / Aluminium (Al), 13

Группа, период, блок

13, 3,

Атомная масса
(молярная масса)

26,9815386(8)[1] а. е. м. (г/моль)

Электронная конфигурация

[Ne] 3s2 3p1

Электроны по оболочкам

2, 8, 3

Радиус атома

143 пм

Химические свойства
Ковалентный радиус

121±4 пм

Радиус Ван-дер-Ваальса

184 пм

Радиус иона

51 (+3e) пм

Электроотрицательность

1,61 (шкала Полинга)

Электродный потенциал

-1,66 В

Степени окисления

3

Энергия ионизации

1‑я: 577.5 (5.984) кДж/моль (эВ)
2‑я: 1816.7 (18.828) кДж/моль (эВ)

Термодинамические свойства простого вещества
Термодинамическая фаза

Твёрдое вещество

Плотность (при н. у.)

2,6989 г/см³

Температура плавления

660 °C, 933,5 K

Температура кипения

2518,82 °C, 2792 K

Уд. теплота плавления

10,75 кДж/моль

Уд. теплота испарения

284,1 кДж/моль

Молярная теплоёмкость

24,35[2] Дж/(K·моль)

Молярный объём

10,0 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая гранецентрированая

Параметры решётки

4,050 Å

Температура Дебая

394 K

Прочие характеристики
Теплопроводность

(300 K) 237 Вт/(м·К)

Скорость звука

5200 м/с

Эмиссионный спектр

Aluminum Spectra.jpg

13
Алюминий
Al
26,982
3s23p1
Кодовый символ, указывающий, что алюминий может быть вторично переработан

Алюми́ний — элемент 13-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы III группы), третьего периода, с атомным номером 13. Обозначается символом Al (лат. Aluminium). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий (CAS-номер: 7429-90-5) — лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

История[править | править вики-текст]

Впервые алюминий был получен датским физиком Гансом Эрстедом в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути. Название элемента образовано от лат. alumen — квасцы[3].

Получение[править | править вики-текст]

Алюминий образует прочную химическую связь с кислородом. По сравнению с другими металлами восстановление алюминия из руды более сложно в связи с его высокой реакционной способностью и с высокой температурой плавления большинства его руд (таких, как бокситы). Прямое восстановление углеродом применяться не может, потому что восстановительная способность алюминия выше, чем у углерода. Возможно непрямое восстановление с получением промежуточного продукта Al4C3, который подвергается разложению при 1900—2000 °С с образованием алюминия. Этот способ находится в разработке, но представляется более выгодным, чем процесс Холла—Эру, так как требует меньших энергозатрат и приводит к образованию меньшего количества CO2[4].

Современный метод получения, процесс Холла—Эру[en] был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.

Для производства 1000 кг чернового алюминия требуется 1920 кг глинозёма, 65 кг криолита, 35 кг фторида алюминия, 600 кг анодных графитовых электродов и около 17 тыс. кВт·ч электроэнергии (~61 ГДж)[5].

Лабораторный способ получения алюминия предложил Фридрих Вёлер в 1827 году восстановлением металлическим калием безводного хлорида алюминия (реакция протекает при нагревании без доступа воздуха):

\mathsf{AlCl_3 + 3K \rightarrow 3KCl + Al}

Физические свойства[править | править вики-текст]

Микроструктура алюминия на протравленной поверхности слитка, чистотой 99,9998 %, размер видимого сектора около 55×37 мм
  • Металл серебристо-белого цвета, лёгкий
  • плотность — 2,7 г/см³
  • температура плавления у технического алюминия — 658 °C, у алюминия высокой чистоты — 660 °C
  • удельная теплота плавления — 390 кДж/кг
  • температура кипения — 2500 °C
  • удельная теплота испарения — 10,53 МДж/кг
  • временное сопротивление литого алюминия — 10-12 кг/мм², деформируемого — 18-25 кг/мм², сплавов — 38-42 кг/мм²
  • Алюминий обладает высокой электропроводностью (37·106 См/м) и теплопроводностью (203,5 Вт/(м·К)), 65 % от электропроводности меди, обладает высокой светоотражательной способностью.
  • Слабый парамагнетик.
  • Температурный коэффициент линейного расширения 24,58·10−6 К−1 (20…200 °C).
  • Удельное сопротивление 0,0262..0,0295 Ом·мм²/м
  • Температурный коэффициент электрического сопротивления 4,3·10−3K−1. Алюминий переходит в сверхпроводящее состояние при температуре 1,2 Кельвина.

Алюминий образует сплавы почти со всеми металлами. Наиболее известны сплавы с медью и магнием (дюралюминий) и кремнием (силумин).

Нахождение в природе[править | править вики-текст]

Распространённость[править | править вики-текст]

По распространённости в земной коре Земли занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре по данным различных исследователей оценивается от 7,45 до 8,14 %[6].

Природные соединения алюминия[править | править вики-текст]

В природе алюминий, в связи с высокой химической активностью, встречается почти исключительно в виде соединений. Некоторые из природных минералов алюминия:

Тем не менее, в некоторых специфических восстановительных условиях (жерла вулканов) найдены ничтожные количества самородного металлического алюминия[7].

В природных водах алюминий содержится в виде малотоксичных химических соединений, например, фторида алюминия. Вид катиона или аниона зависит, в первую очередь, от кислотности водной среды. Концентрации алюминия в водоёмах России колеблются от 0,001 до 10 мг/л. В морской воде его концентрация 0,01 мг/л[8].

Изотопы алюминия[править | править вики-текст]

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27Al с ничтожными следами 26Al, наиболее долгоживущего радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при расщеплении ядер аргона 40Ar протонами космических лучей с высокими энергиями.

Химические свойства[править | править вики-текст]

Гидроксид алюминия

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°), O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной промышленностью. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Не допустить образования оксидной пленки можно, добавляя к алюминию такие металлы как галлий, индий или олово. Поверхность алюминия смачивают низкотемпературными сплавами на основе этих металлов[9].

Легко реагирует с простыми веществами:

\mathsf{4Al + 3O_2 \rightarrow 2Al_2O_3}
\mathsf{2Al + 3Hal_2 \rightarrow 2AlHal_3 (Hal = Cl, Br, I)}
\mathsf{2Al + 3F_2 \rightarrow 2AlF_3}
\mathsf{2Al + 3S \rightarrow Al_2S_3}
\mathsf{2Al + N_2 \rightarrow 2AlN}
\mathsf{4Al + 3C \rightarrow Al_4C_3}

Сульфид и карбид алюминия полностью гидролизуются:

\mathsf{Al_2S_3 + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2S}
\mathsf{Al_4C_3 + 12H_2O \rightarrow 4Al(OH)_3 + 3CH_4}

Со сложными веществами:

  • с водой (после удаления защитной оксидной пленки, например, амальгамированием или растворами горячей щёлочи):
\mathsf{2Al + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2}
  • со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов):
\mathsf{2Al + 2NaOH + 6H_2O \rightarrow 2Na[Al(OH)_4] + 3H_2}
\mathsf{2Al + 6NaOH \rightarrow 2Na_3AlO_3 + 3H_2}
  • Легко растворяется в соляной и разбавленной серной кислотах:
\mathsf{2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2}
\mathsf{2Al + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2}
  • При нагревании растворяется в кислотах — окислителях, образующих растворимые соли алюминия:
\mathsf{8Al + 15H_2SO_4 \rightarrow 4Al_2(SO_4)_3 + 3H_2S + 12H_2O}
\mathsf{Al + 6HNO_3 \rightarrow Al(NO_3)_3 + 3NO_2 + 3H_2O}
\mathsf{8Al + 3Fe_3O_4 \rightarrow 4Al_2O_3 + 9Fe}
\mathsf{2Al + Cr_2O_3 \rightarrow Al_2O_3 + 2Cr}

Производство и рынок[править | править вики-текст]

производство алюминия

Легенда из «Historia naturalis» гласит, что однажды к римскому императору Тиберию (42 год до н. э. — 37 год н. э.) пришёл ювелир с металлической, небьющейся обеденной тарелкой, изготовленной якобы из глинозёма — Al2O3. Тарелка была очень светлой и блестела, как серебро. По всем признакам она должна быть алюминиевой. При этом ювелир утверждал, что только он и боги знают, как получить этот металл из глины. Тиберий, опасаясь, что металл из легкодоступной глины может обесценить золото и серебро, приказал на всякий случай отрубить ювелиру голову. Данная легенда интересна, ввиду возможности обнаружения самородного алюминия (см. выше). Ввиду его легкоплавкости, самородный алюминий мог бы быть легко переплавлен в компактный слиток металла даже на костре. Однако самородный алюминий — редчайший минерал, встречающийся в виде кристалликов микронных размеров[источник не указан 516 дней].

Лишь почти через 2000 лет после Тиберия, в 1825 году, датский физик Ганс Христиан Эрстед получил несколько миллиграммов металлического алюминия, а в 1827 году Фридрих Вёлер смог выделить крупинки алюминия, которые, однако, на воздухе немедленно покрывались тончайшей пленкой оксида алюминия.

До конца XIX века алюминий в промышленных масштабах не производился.

Только в 1854 году Анри Сент-Клер Девиль (его исследования финансировал Наполеон III, рассчитывая, что алюминий пригодится его армии[11][12]) изобрёл первый способ промышленного производства алюминия, основанный на вытеснении алюминия металлическим натрием из двойного хлорида натрия и алюминия NaCl·AlCl3. В 1855 году был получен первый слиток металла массой 6—8 кг. За 36 лет применения, с 1855 по 1890 год, способом Сент-Клер Девиля было получено 200 тонн металлического алюминия. В 1856 году он же получил алюминий электролизом расплава хлорида натрия-алюминия.

В 1885 году был построен завод по производству алюминия в немецком городе Гмелингеме, работающий по технологии, предложенной Николаем Бекетовым. Технология Бекетова мало чем отличалась от способа Девиля, но была проще и заключалась во взаимодействии между криолитом (Na3AlF6) и магнием. За пять лет на этом заводе было получено около 58 т алюминия — более четверти всего мирового производства металла химическим путем в период с 1854 по 1890 год.

Метод, изобретённый почти одновременно Чарльзом Холлом в США и Полем Эру во Франции (1886 год) и основанный на получении алюминия электролизом глинозема, растворённого в расплавленном криолите, положил начало современному способу производства алюминия. С тех пор, в связи с улучшением электротехники, производство алюминия совершенствовалось. Заметный вклад в развитие производства глинозема внесли русские учёные К. И. Байер, Д. А. Пеняков, А. Н. Кузнецов, Е. И. Жуковский, А. А. Яковкин и др.

Первый алюминиевый завод в России был построен в 1932 году в городе Волхов. Металлургическая промышленность СССР в 1939 году производила 47,7 тыс.тонн алюминия, ещё 2,2 тыс.тонн импортировалось.

Вторая мировая война значительно стимулировала производство алюминия. Так, в 1939 году общемировое его производство, без учёта СССР, составляло 620 тыс. т, но уже к 1943 году выросло до 1,9 млн т.

К 1956 году в мире производилось 3,4 млн т первичного алюминия, в 1965 году — 5,4 млн т, в 1980 году — 16,1 млн т, в 1990 году — 18 млн т.

В 2007 году в мире было произведено 38 млн т первичного алюминия, а в 2008 — 39,7 млн т. Лидерами производства являлись:

  1. КНРFlag of the People's Republic of China.svg КНР (в 2007 году произвёл 12,60 млн т, а в 2008 — 13,50 млн т)
  2. РоссияFlag of Russia.svg Россия (3,96/4,20)
  3. КанадаFlag of Canada.svg Канада (3,09/3,10)
  4. СШАFlag of the United States.svg США (2,55/2,64)
  5. АвстралияFlag of Australia.svg Австралия (1,96/1,96)
  6. БразилияFlag of Brazil.svg Бразилия (1,66/1,66)
  7. ИндияFlag of India.svg Индия (1,22/1,30)
  8. НорвегияFlag of Norway.svg Норвегия (1,30/1,10)
  9. ОАЭFlag of the United Arab Emirates.svg ОАЭ (0,89/0,92)
  10. БахрейнFlag of Bahrain.svg Бахрейн (0,87/0,87)
  11. ЮАРFlag of South Africa.svg ЮАР (0,90/0,85)
  12. ИсландияFlag of Iceland.svg Исландия (0,40/0,79)
  13. ГерманияFlag of Germany.svg Германия (0,55/0,59)
  14. ВенесуэлаFlag of Venezuela (state).svg Венесуэла (0,61/0,55)
  15. МозамбикFlag of Mozambique.svg Мозамбик (0,56/0,55)
  16. ТаджикистанFlag of Tajikistan.svg Таджикистан (0,42/0,42)[13]

На мировом рынке, запас 2,224 млн т., а среднесуточное производство 128,6 тыс. т. (2013.7)[14].

В России монополистом по производству алюминия является компания «Российский алюминий», на которую приходится около 13 % мирового рынка алюминия и 16 % глинозёма.[15]

Мировые запасы бокситов практически безграничны, то есть несоизмеримы с динамикой спроса. Существующие мощности могут производить до 44,3 млн т первичного алюминия в год. Следует также учитывать, что в будущем некоторые из применений алюминия могут быть переориентированы на использование, например, композитных материалов.

Цены на алюминий (на торгах международных сырьевых бирж) в 2008—2014 годах составляли в среднем 1,8—2,3 долларов за килограмм[источник не указан 230 дней].

Применение[править | править вики-текст]

Кусок алюминия

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной плёнкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки. Первые же три свойства сделали алюминий основным сырьем в авиационной и авиакосмической промышленности (в последнее время медленно вытесняется композитными материалами, в первую очередь, углеволокном).

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому для упрочнения его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий).

Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 4 раза дешевле[16] за килограмм, но, за счёт в 3,3 раза меньшей плотности, для получения равного сопротивления его нужно приблизительно в 2 раза меньше по весу. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Меньшую электропроводность алюминия (37 ом−1) по сравнению с медью (63 ом−1) компенсируют увеличением сечения алюминиевых проводников. Недостатком алюминия как электротехнического материала является наличие прочной оксидной плёнки, затрудняющей пайку и за счет большего сопротивления вызывающей повышенное нагревание в местах электрических соединений — что, в свою очередь, отрицательно сказывается на надежности контакта и состоянии изоляции. Поэтому, в частности, 7-я редакция Правил устройства электроустановок, принятая в 2002 г., запрещает использовать алюминиевые проводники сечением менее 16 мм².

  • Благодаря комплексу свойств широко распространён в тепловом оборудовании.
  • Алюминий и его сплавы сохраняют прочность при сверхнизких температурах. Благодаря этому он широко используется в криогенной технике.
  • Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью напыления делает алюминий идеальным материалом для изготовления зеркал.
  • В производстве строительных материалов как газообразующий агент.
  • Алитированием придают коррозионную и окалиностойкость стальным и другим сплавам, например клапанам поршневых ДВС, лопаткам турбин, нефтяным платформам, теплообменной аппаратуре, а также заменяют цинкование.
  • Сульфид алюминия используется для производства сероводорода.
  • Идут исследования по разработке пенистого алюминия как особо прочного и лёгкого материала.

В качестве восстановителя[править | править вики-текст]

Сплавы на основе алюминия[править | править вики-текст]

В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе. Обозначение серий сплавов в данной статье приведена для США (стандарт H35.1 ANSI) и согласно ГОСТ России. В России основные стандарты это ГОСТ 1583 «Сплавы алюминиевые литейные. Технические условия» и ГОСТ 4784 «Алюминий и сплавы алюминиевые деформируемые. Марки». Существует также UNS маркировка и международный стандарт алюминиевых сплавов и их маркировки ISO R209 b.

Алюминиевый прокат
  • Алюминиево-магниевые Al-Mg (ANSI: серия 5ххх у деформируемых сплавов и 5xx.x у сплавов для изделий фасонного литья; ГОСТ: АМг). Сплавы системы Al-Mg характеризуются сочетанием удовлетворительной прочности, хорошей пластичности, очень хорошей свариваемости и коррозионной стойкости. Кроме того, эти сплавы отличаются высокой вибростойкостью.

В сплавах этой системы, содержащих до 6 % Mg, образуется эвтектическая система соединения Al3Mg2 c твердым раствором на основе алюминия. Наиболее широкое распространение в промышленности получили сплавы с содержанием магния от 1 до 5 %.

Рост содержания Mg в сплаве существенно увеличивает его прочность. Каждый процент магния повышает предел прочности сплава на 30 МПа, а предел текучести — на 20 МПа. При этом относительное удлинение уменьшается незначительно и находится в пределах 30…35 %.

Сплавы с содержанием магния до 3 % (по массе) структурно стабильны при комнатной и повышенной температуре даже в значительно нагартованном состоянии. С ростом концентрации магния в нагартованном состоянии структура сплава становится нестабильной. Кроме того, увеличение содержания магния свыше 6 % приводит к ухудшению коррозионной стойкости сплава.

Для улучшения прочностных характеристик сплавы системы Al-Mg легируют хромом, марганцем, титаном, кремнием или ванадием. Попадания в сплавы этой системы меди и железа стараются избегать, поскольку они снижают их коррозионную стойкость и свариваемость.

  • Алюминиево-марганцевые Al-Mn (ANSI: серия 3ххх; ГОСТ: АМц). Сплавы этой системы обладают хорошей прочностью, пластичностью и технологичностью, высокой коррозионной стойкостью и хорошей свариваемостью.

Основными примесями в сплавах системы Al-Mn являются железо и кремний. Оба этих элемента уменьшают растворимость марганца в алюминии. Для получения мелкозернистой структуры сплавы этой системы легируют титаном.

Присутствие достаточного количества марганца обеспечивает стабильность структуры нагартованного металла при комнатной и повышенной температурах.

  • Алюминиево-медные Al-Cu (Al-Cu-Mg) (ANSI: серия 2ххх, 2xx.x; ГОСТ: АМ). Механические свойства сплавов этой системы в термоупрочненном состоянии достигают, а иногда и превышают, механические свойства низкоуглеродистых сталей. Эти сплавы высокотехнологичны. Однако у них есть и существенный недостаток — низкое сопротивление коррозии, что приводит к необходимости использовать защитные покрытия.

В качестве легирующих добавок могут встречаться марганец, кремний, железо и магний. Причем наиболее сильное влияние на свойства сплава оказывает последний: легирование магнием заметно повышает предел прочности и текучести. Добавка кремния в сплав повышает его способность к искусственному старению. Легирование железом и никелем повышает жаропрочность сплавов второй серии.

Нагартовка этих сплавов после закалки ускоряет искусственное старение, а также повышает прочность и сопротивление коррозии под напряжением.

  • Сплавы системы Al-Zn-Mg (Al-Zn-Mg-Cu) (ANSI: серия 7ххх, 7xx.x). Сплавы этой системы ценятся за очень высокую прочность и хорошую технологичность. Представитель системы — сплав 7075 является самым прочным из всех алюминиевых сплавов. Эффект столь высокого упрочнения достигается благодаря высокой растворимости цинка (70 %) и магния (17,4 %) при повышенных температурах, резко уменьшающейся при охлаждении.

Однако существенным недостатком этих сплавов является крайне низкая коррозионная стойкость под напряжением. Повысить сопротивление коррозии сплавов под напряжением можно легированием медью.

Нельзя не отметить открытой в 60-е годы закономерности: присутствие лития в сплавах замедляет естественное и ускоряет искусственное старение. Помимо этого, присутствие лития уменьшает удельный вес сплава и существенно повышает его модуль упругости. В результате этого открытия были разработаны новые системы сплавов Al-Mg-Li, Al-Cu-Li и Al-Mg-Cu-Li.

  • Алюминиево-кремниевые сплавы (силумины) лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов.
  • Комплексные сплавы на основе алюминия: авиаль.

Алюминий как добавка в другие сплавы[править | править вики-текст]

Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборах используют (наряду с другими сплавами) фехраль (Fe, Cr, Al).

Ювелирные изделия[править | править вики-текст]

Алюминиевое украшение для японских причёсок

Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Так, Наполеон III заказал алюминиевые пуговицы, а Менделееву в 1889 г. были подарены весы с чашами из золота и алюминия. Мода на ювелирные изделия из алюминия сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

В Японии алюминий используется в производстве традиционных украшений, заменяя серебро.

Столовые приборы[править | править вики-текст]

По приказу Наполеона III были изготовлены алюминиевые столовые приборы, которые подавались на торжественных обедах ему и самым почётным гостям. Другие гости при этом пользовались приборами из золота и серебра.[17]

Затем столовые приборы из алюминия стали широко распространены, но в настоящее время их все ещё можно увидеть лишь в некоторых заведениях общественного питания — несмотря на заверения многих специалистов о вредности алюминия для здоровья человека[источник не указан 506 дней]. Кроме того, такие приборы со временем теряют цвет и первозданную форму из-за мягкости алюминия.

Стекловарение[править | править вики-текст]

В стекловарении используются фторид, фосфат и оксид алюминия.

Пищевая промышленность[править | править вики-текст]

Алюминий зарегистрирован в качестве пищевой добавки Е173.

Алюминий и его соединения в ракетной технике[править | править вики-текст]

Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твёрдых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее:

  • Порошковый алюминий как горючее в твердых ракетных топливах. Применяется также в виде порошка и суспензий в углеводородах.
  • Гидрид алюминия.
  • Боранат алюминия.
  • Триметилалюминий.
  • Триэтилалюминий.
  • Трипропилалюминий.

Триэтилалюминий (обычно, совместно с триэтилбором) используется также для химического зажигания (то есть, как пусковое горючее) в ракетных двигателях, так как самовоспламеняется в газообразном кислороде. Ракетные топлива, образованные гидридом алюминия, в зависимости от окислителя, имеют следующие характеристики[18]:

Окислитель Удельная тяга
(Р1, сек)
Температура
сгорания, °С
Плотность
топлива, г/см³
Прирост скорости,
ΔVид, 25, м/с
Весовое содерж.
горючего, %
Фтор 348,4 5009 1,504 5328 25
Тетрафторгидразин 327,4 4758 1,193 4434 19
ClF3 287,7 4402 1,764 4762 20
ClF5 303,7 4604 1,691 4922 20
Перхлорилфторид 293,7 3788 1,589 4617 47
Фторид кислорода 326,5 4067 1,511 5004 38,5
Кислород 310,8 4028 1,312 4428 56
Пероксид водорода 318,4 3561 1,466 4806 52
N2O4 300,5 3906 1,467 4537 47
Азотная кислота 301,3 3720 1,496 4595 49

Алюминий в мировой культуре[править | править вики-текст]

Поэт Андрей Вознесенский написал в 1959 году стихотворение «Осень»[19], в котором использовал алюминий в качестве художественного образа:

…А за окошком в юном инее
лежат поля из алюминия…

Виктор Цой написал песню «Алюминиевые огурцы» с припевом:

Я сажаю алюминиевые огурцы
На брезентовом поле

У ленинградской рок-группы «Народное ополчение» в альбоме «Брежнев жив» 1989 года есть песня «Алюминиевый дом».

Важную роль алюминий играет в историко-мистической трилогии Андрея Валентинова и Олди «Алюмен».

В произведениях эпохи знакомства человечества с алюминием[править | править вики-текст]

  • В романе Н. Г. Чернышевского «Что делать?» (18621863) один из главных героев описывает в письме свой сон — видение будущего, в котором люди живут, отдыхают и работают в многоэтажных зданиях из стекла и алюминия; из алюминия выполнены полы, потолки и мебель (во времена Н. Г. Чернышевского алюминий ещё только начинали открывать).
  • В повести Герберта Уэллса «Война миров» (1897 год) марсиане, покинув один из своих лагерей, оставили (бросили) в нём несколько листов алюминия.

Токсичность[править | править вики-текст]

Отличается незначительным токсическим действием, но многие растворимые в воде неорганические соединения алюминия сохраняются в растворённом состоянии длительное время и могут оказывать вредное воздействие на человека и теплокровных животных через питьевую воду. Наиболее ядовиты хлориды, нитраты, ацетаты, сульфаты и др. Для человека токсическое действие при попадании внутрь оказывают следующие дозы соединений алюминия (мг/кг массы тела):

В первую очередь действует на нервную систему (накапливается в нервной ткани, приводя к тяжёлым расстройствам функции ЦНС). Однако свойство нейротоксичности алюминия стали изучать с середины 1960-х годов, так как накоплению металла в организме человека препятствует механизм его выведения. В обычных условиях с мочой может выделяться до 15 мг элемента в сутки. Соответственно, наибольший негативный эффект наблюдается у людей с нарушенной выделительной функцией почек.

Норматив содержания алюминия в воде хозяйственно-питьевого использования составляет 0,2 мг/л. При этом данная ПДК может быть увеличена до 0,5 мг/л главным государственным санитарным врачом по соответствующей территории для конкретной системы водоснабжения.

По некоторым биологическим исследованиям поступление алюминия в организм человека было сочтено фактором в развитии болезни Альцгеймера[20][21], но эти исследования были позже раскритикованы и вывод о связи одного с другим опровергался[22][23][24].

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Т. 85. — № 5. — С. 1047-1078. — DOI:10.1351/PAC-REP-13-03-02
  2. Химическая энциклопедия. В 5-ти т / Редкол.: Кнунянц И. Л. (гл. ред.). — М.: Советская энциклопедия, 1988. — Т. 1. — С. 116. — 623 с. — 100 000 экз.
  3. aluminium. Online Etymology Dictionary. Etymonline.com. Проверено 3 мая 2010.
  4. Aluminum Recycling and Processing for Energy Conservation and Sustainability. — ASM International, 2007. — P. 198. — ISBN 0-87170-859-0.
  5. Краткая химическая энциклопедия. Т. 1 (А—Е). — М.: Советская энциклопедия. 1961
  6. Н. В. Короновский, А. Ф. Якушова. Основы геологии
  7. Олейников Б. В. и др. Алюминий — новый минерал класса самородных элементов //Записки ВМО. — 1984, ч. CXIII, вып. 2, с. 210—215. [1]
  8. J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
  9. Под ред. В.А.Мошникова и Е.И.Терукова. Основы водородной энергетики. — СПб.: Изд-во СПбГЭТУ «Лэти», 2010. — 288 с. — ISBN 978-5-7629-1096-5.
  10. Лидин Р. А., Молочко В. А., Андреева Л. Л. Реакции неорганических веществ: справочник / Под ред. Р. А. Лидина. — 2-е изд., перераб. и доп. — М.: Дрофа, 2007. — С. 16. — 637 с. — ISBN 978-5-358-01303-2.
  11. Энциклопедия: драгоценности, ювелирные изделия, ювелирные камни. Драгоценные металлы. Драгоценный алюминий
  12. «Серебро» из глины
  13. MINERAL COMMODITY SUMMARIES 2009
  14. В мире растут запасы алюминия.
  15. Производство первичного алюминия в мире и в России
  16. Kitco — Base Metals — Industrial metals — Copper, Aluminum, Nickel, Zinc, Lead — Charts, Prices, Graphs, Quotes, Cu, Ni, Zn, Al, Pb
  17. Факты об алюминии
  18. Сарнер С. Химия ракетных топлив = Propellant Chemistry / Пер. с англ. Е. П. Голубкова, В. К. Старкова, В. Н. Шеманиной; под ред. В. А. Ильинского. — М.: Мир, 1969. — С. 111. — 488 с.
  19. А. Вознесенский. Осень
  20. Shcherbatykh I, Carpenter DO (May 2007). The role of metals in the etiology of Alzheimer’s disease // J. Alzheimers Dis. 11 (2): 191—205.
  21. Rondeau V, Commenges D, Jacqmin-Gadda H, Dartigues JF (July 2000). Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study // Am. J. Epidemiol. 152 (1): 59-66
  22. Rondeau V (2002). A review of epidemiologic studies on aluminum and silica in relation to Alzheimer’s disease and associated disorders // Rev Environ Health 17 (2): 107-21.
  23. Martyn CN, Coggon DN, Inskip H, Lacey RF, Young WF (May 1997). Aluminum concentrations in drinking water and risk of Alzheimer’s disease // Epidemiology 8 (3): 281-6.
  24. Graves AB, Rosner D, Echeverria D, Mortimer JA, Larson EB (September 1998). Occupational exposures to solvents and aluminium and estimated risk of Alzheimer’s disease // Occup Environ Med 55 (9): 627-33.

Ссылки[править | править вики-текст]