Дифракция

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Дифракция первого и второго порядка как интерференция волн, образованных при падении плоской волны на непрозрачный экран с парой щелей. Стрелками показаны линии, проходящие через линии интерференционных максимумов

Дифра́кция во́лн (лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн (интерференция вторичных волн). Общим свойством всех эффектов дифракции является зависимость степени её проявления от соотношения между длиной волны λ и размером ширины волнового фронта d, либо непрозрачного экрана на пути его распространения, либо неоднородностей структуры самой волны.

Поскольку в большинстве случаев, имеющих практическое значение, это ограничение ширины волнового фронта имеет место всегда, явление дифракции сопровождает любой процесс распространения волн.

Так, именно явлением дифракции задаётся предел разрешающей способности любого оптического прибора, создающего изображение, который невозможно преступить принципиально при заданной ширине спектра излучения, используемого для построения изображения[1].

В ряде случаев, в особенности при изготовлении сложных оптических систем, разрешающая способность ограничивается не дифракцией, а аберрациями, как правило, возрастающими при увеличении диаметра объектива. Отсюда происходит известное фотографам явление увеличения до определённых пределов качества изображения при диафрагмировании объектива.

При распространении излучения в оптически неоднородных средах дифракционные эффекты заметно проявляются при размерах неоднородностей, сравнимых с длиной волны. При размерах неоднородностей, существенно превышающих длину волны (на 3—4 порядка и более), явлением дифракции, как правило, можно пренебречь. В последнем случае распространение волн с высокой степенью точности описывается законами геометрической оптики. С другой стороны, если размер неоднородностей среды сравним с длиной волны, в таком случае дифракция проявляет себя в виде эффекта рассеяния волн.[2]

Изначально явление дифракции трактовалось как огибание волной препятствия, то есть проникновение волны в область геометрической тени. С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным. Так, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн (в случае учёта их пространственного ограничения) в неоднородных средах.

Дифракция волн может проявляться:

  • в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях — как расширение угла распространения волновых пучков или их отклонение в определённом направлении;
  • в разложении волн по их частотному спектру;
  • в преобразовании поляризации волн;
  • в изменении фазовой структуры волн.

Наиболее хорошо изучена дифракция электромагнитных (в частности, оптических) и акустических волн, а также гравитационно-капиллярных волн (волны на поверхности жидкости).

Тонкости в толковании термина «дифракция»[править | править вики-текст]

В явлении дифракции важную роль играют исходные размеры области волнового поля и исходная структура волнового поля, которая подвержена существенной трансформации в случае, если элементы структуры волнового поля сравнимы с длиной волны или меньше её.

Например, ограниченный в пространстве волновой пучок имеет свойство «расходиться» («расплываться») в пространстве по мере распространения даже в однородной среде. Данное явление не описывается законами геометрической оптики и относится к дифракционным явлениям (дифракционная расходимость, дифракционное расплывание волнового пучка).

Исходное ограничение волнового поля в пространстве и его определённая структура могут возникнуть не только за счёт присутствия поглощающих или отражающих элементов, но и, например, при порождении (генерации, излучении) данного волнового поля.

Следует заметить, что в средах, в которых скорость волны плавно (по сравнению с длиной волны) меняется от точки к точке, распространение волнового пучка является криволинейным (см. градиентная оптика, градиентные волноводы, мираж). При этом волна также может огибать препятствие. Однако такое криволинейное распространение волны может быть описано с помощью уравнений геометрической оптики, и это явление не относится к дифракции.

Вместе с тем, во многих случаях дифракция может быть и не связана с огибанием препятствия (но всегда обусловлена его наличием). Такова, например, дифракция на непоглощающих (прозрачных), так называемых фазовых, структурах.

Поскольку, с одной стороны, явление дифракции света оказалось невозможным объяснить с точки зрения лучевой модели, то есть с точки зрения геометрической оптики, а с другой стороны, дифракция получила исчерпывающее объяснение в рамках волновой теории, то наблюдается тенденция понимать её проявление как любое отступление от законов геометрической оптики.

При этом следует заметить, что некоторые волновые явления не описываются законами геометрической оптики и, в то же время, не относятся к дифракции. К таким типично волновым явлениям относится, например, вращение плоскости поляризации световой волны в оптически активной среде, которое дифракцией не является.

Вместе с тем, единственным результатом так называемой коллинеарной дифракции с преобразованием оптических мод может быть именно поворот плоскости поляризации, в то время как дифрагированный волновой пучок сохраняет исходное направление распространения. Такой тип дифракции может быть реализован, например, как дифракция света на ультразвуке в двулучепреломляющих кристаллах, при которой волновые векторы оптической и акустической волн параллельны друг другу.

Ещё один пример: с точки зрения геометрической оптики невозможно объяснить явления, имеющие место в так называемых связанных волноводах, хотя эти явления также не относят к дифракции (волновые явления, связанные с «вытекающими» полями).

Раздел оптики «Оптика кристаллов», имеющей дело с оптической анизотропией среды, также имеет лишь косвенное отношение к проблеме дифракции. В то же самое время он нуждается в корректировке используемых представлений геометрической оптики. Это связано с различием в понятии луча (как направления распространения света) и распространения волнового фронта (то есть направления нормали к нему)

Отступление от прямолинейности распространения света наблюдается также в сильных полях тяготения. Экспериментально подтверждено, что свет, проходящий вблизи массивного объекта, например, вблизи звезды, отклоняется в её поле тяготения в сторону звезды. Таким образом, и в данном случае можно говорить об «огибании» световой волной препятствия. Однако, это явление также не относится к дифракции.


Частные случаи дифракции[править | править вики-текст]

Исторически в проблеме дифракции сначала рассматривались два крайних случая, связанных с ограничением препятствием (экраном с дыркой) сферической волны и это была дифракция Френеля, либо плоской волны на щели или системе отверстий - дифракция Фраунгофера


Дифракция на щели[править | править вики-текст]

Распределение интенсивности света при дифракции на щели

В качестве примера рассмотрим дифракционную картину возникающую при прохождении света через щель в непрозрачном экране. Мы найдём интенсивность света в зависимости от угла в этом случае. Для написания исходного уравнения используем принцип Гюйгенса.

Рассмотрим монохроматическую плоскую волну с амплитудой \Psi^\prime с длиной волны λ, падающую на экран с щелью ширины a.

Будем считать, что щель находится в плоскости x′-y′ с центром в начале координат. Тогда может предполагаться, что дифракция производит волну ψ, которая расходится радиально. Вдали от разреза можно записать

\Psi = \int\limits_{slit} \frac{i}{r\lambda} \Psi^\prime e^{-ikr}\,dslit

пусть (x′,y′,0) — точка внутри разреза, по которому мы интегрируем. Мы хотим узнать интенсивность в точке (x,0,z). Щель имеет конечный размер в x направлении (от x^\prime=-a/2 до +a/2\,), и бесконечна в y направлении ([y'=-\infty, \infty]).

Расстояние r от щели определяется как:

r = \sqrt{\left(x - x^\prime\right)^2 + y^{\prime2} + z^2}
r = z \left(1 + \frac{\left(x - x^\prime\right)^2 + y^{\prime2}}{z^2}\right)^\frac{1}{2}

Предполагая случай дифракции Фраунгофера, получим условие z \gg \big|\left(x - x^\prime\right)\big|. Другими словами, расстояние до точки наблюдения много больше характерного размера щели (ширины). Используя биномиальное разложение и пренебрегая слагаемыми второго и выше порядков малости, можно записать расстояние в виде:

r \approx z \left( 1 + \frac{1}{2} \frac{\left(x - x^\prime \right)^2 + y^{\prime 2}}{z^2} \right)
r \approx z + \frac{\left(x - x^\prime\right)^2 + y^{\prime 2}}{2z}

Видно, что 1/r перед уравнением не осциллирует, то есть даёт малый вклад в интенсивность по сравнению с экспоненциальным множителем. И тогда его можно записать приближённо как z.

\Psi \, = \frac{i \Psi^\prime}{z \lambda} \int\limits_{-\frac{a}{2}}^{\frac{a}{2}}\int\limits_{-\infty}^{\infty} e^{-ik\left[z+\frac{ \left(x - x^\prime \right)^2 + y^{\prime 2}}{2z}\right]} \,dx^\prime \,dy^\prime
= \frac{i \Psi^\prime}{z \lambda} e^{-ikz} \int\limits_{-\frac{a}{2}}^{\frac{a}{2}}e^{-ik\left[\frac{\left(x - x^\prime \right)^2}{2z}\right]} \,dx^\prime \int\limits_{-\infty}^{\infty} e^{-ik\left[\frac{y^{\prime 2}}{2z}\right]} \,dy^\prime
=\Psi^\prime \sqrt{\frac{i}{z\lambda}} e^\frac{-ikx^2}{2z} \int\limits_{-\frac{a}{2}}^{\frac{a}{2}}e^\frac{ikxx^\prime}{z} e^\frac{-ikx^{\prime 2}}{2z} \,dx^\prime

Здесь мы введём некую константу 'C', которой обозначим все постоянные множители в предыдущем уравнении. Она, в общем случае может быть комплексной, но это не важно, так как в конце нас будет интересовать только интенсивность, и нам будет интересен только квадрат модуля.

В случае дифракции Фраунгофера kx^{\prime 2}/z мало, поэтому e^\frac{-ikx^{\prime 2}}{2z} \approx 1. такое же приближение верно и для e^\frac{-ikx^2}{2z}. Таким образом, считая C = \Psi^\prime \sqrt{\frac{i}{z\lambda}}, приводит к выражению:

\Psi\, = C \int\limits_{-\frac{a}{2}}^{\frac{a}{2}}e^\frac{ikxx^\prime}{z} \,dx^\prime
=C \frac{\left(e^\frac{ikax}{2z} - e^\frac{-ikax}{2z}\right)}{\frac{ikx}{z}}

Используя формулу Эйлера и её производную: \sin x = \frac{e^{ix} - e^{-ix}}{2i} и \sin \theta = \frac{x}{z}.

\Psi = aC \frac{\sin\frac{ka\sin\theta}{2}}{\frac{ka\sin\theta}{2}} = aC \left[ \operatorname{sinc} \left( \frac{ka\sin\theta}{2} \right) \right]

где ненормированная синкус функция определена как \operatorname{sinc}(x) \ \stackrel{\mathrm{def}}{=}\  \frac{\operatorname{sin}(x)}{x}.

Подставляя \frac{2\pi}{\lambda} = k в последнее выражение для амплитуды, можно получить ответ для интенсивности в виде I волны в зависимости от угла θ:

I(\theta)\, = I_0 {\left[ \operatorname{sinc} \left( \frac{\pi a}{\lambda} \sin \theta \right) \right] }^2

См. также Дифракция на N-щелях

Дифракция на отверстии[править | править вики-текст]

Дифракция лазерного луча с длиной волны 650 нм, прошедшего через отверстие диаметром 0,2 мм

Дифракция звука и ультразвуковая локация[править | править вики-текст]

Дифракция радиоволн и радиолокация[править | править вики-текст]

Исследованием дифракции радиоволн занимается геометрическая теория дифракции[3]

Дифракционная решётка[править | править вики-текст]

Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.

Дифракция рентгеновских лучей в кристаллах и рентгеноструктурный анализ[править | править вики-текст]

Дифракция света на ультразвуке[править | править вики-текст]

Одним из наглядных примеров дифракции света на ультразвуке является дифракция света на ультразвуке в жидкости. В одной из постановок такого эксперимента в оптически-прозрачной ванночке в форме прямоугольного параллелепипеда с оптически-прозрачной жидкостью с помощью пластинки из пьезоматериала на частоте ультразвука возбуждается стоячая волна. В её узлах плотность воды ниже, и как следствие ниже её оптическая плотность, в пучностях — выше. Таким образом, при этих условиях ванночка с водой становится для световой волны фазовой дифракционной решёткой, на которой осуществляется дифракция в виде изменения фазовой структуры волн, что можно наблюдать в оптический микроскоп методом фазового контраста или методом тёмного поля.

Дифракция электронов[править | править вики-текст]

Дифракция электронов — процесс рассеяния электронов на совокупности частиц вещества, при котором электрон проявляет свойства, аналогичные свойствам волны. При выполнении некоторых условий, пропуская пучок электронов через материал можно зафиксировать дифракционную картину, соответствующую структуре материала. Процесс дифракции электронов получил широкое применение в аналитических исследованиях кристаллических структур металлов, сплавов, полупроводниковых материалов.

Брегговская дифракция[править | править вики-текст]

Согласно Закону Брэгга каждая точка (или отражение) в этой дифракционной картине формируется конструктивной интерференцией рентгеновских лучей, проходящих через кристалл. Эти данные могут быть использованы для определения атомной структуры кристаллов.

Дифракция от трехмерной периодической структуры, такой как атомы в кристалле называется дифракцией Брегга. Это похоже на то, что происходит, когда волны рассеиваются на дифракционной решётке. Брегговская дифракция является следствием интерференции между волнами, отражёнными от кристаллических плоскостей. Условие возникновения интерференции определяется законом Вульфа-Брегга:

 2d \sin \theta = n \lambda \, ,

где

d — расстояние между кристаллическими плоскостями,
θ угол скольжения — дополнительный угол к углу падения,
λ — длина волны,
n (n = 1,2…) — целое число называемое порядком дифракции.

Брегговская дифракция может осуществляться при использовании света с очень маленькой длиной волны, такого как рентгеновское излучение, либо волны материи, такие как нейтроны и электроны, длины волн которых сравнимы или много меньше, чем межатомное расстояние.[4] Получаемые данные дают информацию о межплоскостных расстояния, что позволяет вывести кристаллическую структуру. Дифракционный контраст, в электронных микроскопах и рентгеновских топографических устройствах, в частности, также является мощным инструментом для изучения отдельных дефектов и локальных полей деформации в кристаллах.

Дифракция частиц (нейтронов, атомов, молекул)[править | править вики-текст]

История исследований[править | править вики-текст]

Основы теории дифракции были заложены при изучении дифракции света в первой половине XIX века в трудах Юнга и Френеля. Среди других учёных, которые внесли значительный вклад в изучение дифракции: Гримальди, Гюйгенс, Араго, Пуассон, Гаусс, Фраунгофер, Бабине, Кирхгоф, Аббе, У. Г. Брэгг и У. Л. Брэгг, фон Лауэ, Роуланд, Зоммерфельд, Леонтович, Фок, Ван-Циттерт, Цернике (см. История оптики).

Обнаружение дифракции частиц (электронов) в 1927 году (опыт Дэвиссона и Джермера) сыграло большую роль в подтверждении существования волн де Бройля и в подтверждении концепции корпускулярно-волнового дуализма (идеи двойственной природы волн и частиц). В XX и XXI веках продолжились исследования дифракции волн на сложных структурах.

Дифракция в фотографии[править | править вики-текст]

Дифракцию можно наблюдать в фотографии: чрезмерное закрытие диафрагмы (относительного отверстия) приводит к падению резкости. Поэтому для сохранения оптимально резкого изображения на фотографии не рекомендуется полностью закрывать диафрагму. Нужно отметить, что для каждой фотокамеры существует своя граница, до которой можно закрывать диафрагму, не опасаясь отрицательного эффекта дифракции[5][6].

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Григорий Самуилович Ландсберг. Оптика. Издательство «Наука»,М.,1976 страница 346
  2. В явлении рассеяния на мелких неоднородностях среды сказывается не только экранирование фронта волны, но и свойства самой неоднородности (скажем, водяной капли), определяющие индикатрису рассеяния (эффект Ми), что рассматривается, например, в научной дисциплине «Оптика атмосферы» в разделе, связанном с аэрозолем.
  3. Боровиков В. А., Кинбер Б. Е. Геометрическая теория дифракции. М.: Связь, 1978, 247 с.
  4. John M. Cowley (1975) Diffraction physics (North-Holland, Amsterdam) ISBN 0-444-10791-6
  5. Lens Diffraction & Photography // Cambridge in Colour
  6. Таблица характеристик матриц цифровых фотоаппаратов

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]