Жёсткий диск

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Жесткий Диск
Laptop-hard-drive-exposed.jpg
2.5" SATA жесткий диск
Работа жёсткого диска

Накопи́тель на жёстких магни́тных ди́сках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск, в компьютерном сленге «винче́стер» — запоминающее устройство (устройство хранения информации) произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома — магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм[1]), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

Название «Винчестер»[править | править исходный текст]

По одной из версий[2][3], название «винчестер» (англ. Winchester) накопитель получил благодаря работавшему в фирме IBM Кеннету Хотону (англ. Kenneth E. Haughton), руководителю проекта, в результате которого в 1973 году был выпущен жёсткий диск модели 3340, впервые объединивший в одном неразъёмном корпусе пластины диска и считывающие головки. При его разработке инженеры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 мегабайт каждый, что по созвучию совпало с обозначением популярного охотничьего оружия — винтовки Winchester Model 1894, использующего винтовочный патрон .30-30 Winchester. Также существует версия[4], что название произошло исключительно из-за названия патрона, также выпускавшегося Winchester Repeating Arms Company, первого созданного в США боеприпаса для гражданского оружия «малого» калибра на бездымном порохе, который превосходил патроны старых поколений по всем показателям и немедленно завоевал широчайшую популярность.

В Европе и США название «винчестер» вышло из употребления в 1990-х годах, в русском же языке сохранилось и получило полуофициальный статус, а в компьютерном сленге сократилось до слова «винт» или «хард» (наиболее используемый вариант, чуть реже используется «винч»).

Характеристики[править | править исходный текст]

Интерфейс (англ. interface) — техническое средство взаимодействия 2-х разнородных устройств, что в случае с жёсткими дисками является совокупностью линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии (контроллеры интерфейсов), и правил (протокола) обмена. Современные серийно выпускаемые внутренние жёсткие диски могут использовать интерфейсы ATA (он же IDE и PATA), SATA, eSATA, SCSI, SAS, FireWire, SDIO и Fibre Channel.

Ёмкость (англ. capacity) — количество данных, которые могут храниться накопителем. С момента создания первых жёстких дисков в результате непрерывного совершенствования технологии записи данных их максимально возможная ёмкость непрерывно увеличивается. Ёмкость современных жёстких дисков (с форм-фактором 3,5 дюйма) на сентябрь 2011 года достигает 4000 Гб (4 терабайт) и близится к 5 Тб.[5] В отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину (см.: двоичные приставки), производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 ГиБ.[6][7]

Физический размер (форм-фактор; англ. dimension) — почти все накопители 2001—2008 годов для персональных компьютеров и серверов имеют ширину либо 3,5, либо 2,5 дюйма — под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1,8, 1,3, 1 и 0,85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5,25 дюймов.

Время произвольного доступа (англ. random access time) — среднее время, за которое винчестер выполняет операцию позиционирования головки чтения/записи на произвольный участок магнитного диска. Диапазон этого параметра — от 2,5 до 16 мс. Как правило, минимальным временем обладают диски для серверов (например, у Hitachi Ultrastar 15K147 — это 3,7 мс[8]), самым большим из актуальных — диски для портативных устройств (Seagate Momentus 5400.3 — 12,5 мс[9]). Для сравнения, у SSD-накопителей этот параметр меньше 1 мс.

Скорость вращения шпинделя (англ. spindle speed) — количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки); 5400, 5900, 7200 и 10 000 (персональные компьютеры); 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции). Увеличению скорости вращения шпинделя в винчестерах для ноутбуков препятствует гироскопический эффект, влияние которого пренебрежимо мало в неподвижных компьютерах.

Надёжность (англ. reliability) — определяется как среднее время наработки на отказ (MTBF). Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T.

Количество операций ввода-вывода в секунду (англ. IOPS) — у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии — важный фактор для мобильных устройств.

Сопротивляемость ударам (англ. G-shock rating) — сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate) при последовательном доступе:

  • внутренняя зона диска: от 44,2 до 74,5 Мб/с;
  • внешняя зона диска: от 60,0 до 111,4 Мб/с.

Объём буфера — буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных дисках он обычно варьируется от 8 до 128 Мб.

Уровень шума[править | править исходный текст]

Силиконовые втулки для крепления жёстких дисков. Уменьшают вибрацию и шум

Уровень шума — шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Для снижения шума от жёстких дисков применяют следующие методы:

  • Программный, c помощью настройки, встроенной в большинство современных дисков, системы AAM. Переключение жёсткого диска в малошумный режим приводит к снижению производительности в среднем на 5-25 %, но делает шум при работе практически неслышным.
  • Использование шумопоглощающих устройств[10], закрепления дисков на резиновых или силиконовых шайбах или даже полная замена крепления на гибкую подвеску.

Устройство[править | править исходный текст]

Схема устройства накопителя на жёстких магнитных дисках

Жёсткий диск состоит из гермозоны и блока электроники.

Гермозона[править | править исходный текст]

Разобранный жёсткий диск Samsung HD753LJ ёмкостью 750 Гб
Магнит соленоидного малоинерционного двигателя, который перемещает головку жёсткого диска
Разобранный жёсткий диск

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, в некоторых моделях разделённые сепараторами, а также блок головок с устройством позиционирования, и электропривод шпинделя.

Вопреки расхожему мнению, в подавляющем большинстве устройств внутри гермозоны нет вакуума. Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом, а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля, который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления (например, в самолёте) и температуры, а также при прогреве устройства во время работы.

Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр — пылеуловитель.

Блок головок — пакет кронштейнов (рычагов) из упругой стали (обычно по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла (IBM), но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика — окислов железа, марганца и других металлов. Точный состав и технология нанесения составляют коммерческую тайну. Большинство бюджетных устройств содержит одну или две пластины, но существуют модели с бо́льшим числом пластин.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (от 3600 до 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин. Шпиндельный двигатель жёсткого диска трёхфазный синхронный, что обеспечивает стабильность вращения магнитных дисков, смонтированных на оси (шпинделе) двигателя. Статор двигателя содержит три обмотки, включённых «звездой» с отводом посередине, а ротор — постоянный секционный неодимовый магнит.

Сепаратор (разделитель) — пластина, изготовленная из пластика или алюминия, находящаяся между пластинами магнитных дисков и над верхней пластиной магнитного диска. Используется для выравнивания потоков воздуха внутри гермозоны.[11]

Устройство позиционирования[править | править исходный текст]

Разобранный жёсткий диск. Снята верхняя пластина статора соленоидного двигателя

Устройство позиционирования головок (жарг. актуатор) представляет из себя малоинерционный[источник не указан 935 дней] соленоидный двигатель.[12] Он состоит из неподвижной пары сильных неодимовых постоянных магнитов, а также катушки (соленоид) на подвижном кронштейне блока головок. Двигатель, совместно с системой считывания и обработки записанной на диск сервоинформации и контроллером (VCM controller) образует сервопривод.[13]

Принцип работы двигателя заключается в следующем: обмотка находится внутри статора (обычно два неподвижных магнита), ток, подаваемый с различной силой и полярностью, заставляет её точно позиционировать кронштейн (коромысло) с головками по радиальной траектории. От скорости работы устройства позиционирования зависит время поиска данных на поверхности пластин.[12]

В каждом накопителе существует специальная зона, называемая парковочной, именно на ней останавливаются головки в те моменты, когда накопитель выключен, либо находится в одном из режимов низкого энергопотребления. В состоянии парковки кронштейн (коромысло) блока головок находится в крайнем положении и упирается в ограничитель хода. При операциях доступа к информации (чтение/запись) одним из источников шума является вибрация вследствие ударов кронштейнов, удерживающих магнитные головки, об ограничители хода в процессе возвращения головок в нулевую позицию. Для снижения шума на ограничителях хода установлены демпфирующие шайбы из мягкой резины. Значительно уменьшить шум жёсткого диска можно программным путём, меняя параметры режимов ускорения и торможения блока головок. Для этого разработана специальная технология — Automatic Acoustic Management. Официально возможность программного управления уровнем шума жёсткого диска появилась в стандарте ATA/ATAPI-6 (для этого нужно менять значение управляющей переменной), хотя некоторые производители делали экспериментальные реализации и ранее.

Блок электроники[править | править исходный текст]

В ранних жёстких дисках управляющая логика была вынесена на MFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управления шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр, используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например, метод PRML (Partial Response Maximum Likelihood — максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

Производство[править | править исходный текст]

Процесс производства жёстких дисков состоит из нескольких этапов:

  • Алюминий поступает в Зону механической обработки в виде длинных цилиндрических болванок.
  • От болванок отрезаются заготовки. Далее заготовке алмазным резцом придают нужные точные размеры и обрабатывают фаски.
  • Далее на плоскополировальном станке рабочие поверхности заготовок полируют до нужной чистоты.
  • Заготовки очищают, кладут в кассеты и перемещают в Зону проверки и транспортировки (эта зона имеет класс чистоты 100), где происходит контроль заготовок.

Для нанесения магнитного покрытия заготовки перемещают в Зону нанесения магнитных покрытий (расположена внутри зоны проверки, имеет класс 10).

После завершения процесса нанесения магнитных покрытий диски укладывают в кассеты и вновь перемещают в Зону проверки.

  • По конвейеру кассеты с дисками едут к сертификатору, который представляет из себя достаточно большой (самый крупный в цехе) агрегат, который имеет несколько шпинделей и систему автоматической установки дисков из кассет. Также сертификатор имеет головки для записи и чтения установленных на шпиндели дисков. Диски форматируются, одним длинным сектором на весь трек. При считывании выявляются дефекты, которые заносятся в базу данных.
  • Проверенные блины укладываются в кассеты и отправляются на склад.

Производители[править | править исходный текст]

Изначально на рынке было большое разнообразие жёстких дисков, производившихся множеством компаний. В связи с ужесточением конкуренции, бурным ростом ёмкости, требующим современных технологий, и понижением норм прибыли большинство производителей было либо куплено конкурентами, либо перешло на другие виды продукции.

В середине 1990-х годов существовала компания Conner Peripherials, которую впоследствии купила Seagate. В первой половине 1990-х существовала фирма Micropolis, производившая очень дорогие SCSI-диски premium-класса для серверов. Но при выпуске первых в отрасли винчестеров на 7200 об/мин ею были использованы некачественные подшипники шпинделя, поставлявшиеся фирмой Nidec, и Micropolis понесла фатальные убытки на возвратах, разорилась и была полностью выкуплена компанией Seagate. Жёсткие диски выпускала и компания NEC.

Fujitsu продолжает выпускать жёсткие диски для ноутбуков и SCSI-диски, но покинула массовый рынок настольных накопителей в 2001 году из-за фатальной неудачи, связанной с массово выходившей из строя микросхемой контроллера Cirrus Logic на самом диске, до этого жёсткие диски Fujitsu считались лучшими в секторе настольных компьютеров, имея превосходные характеристики вращающихся поверхностей, практически без перенесённых на заводе секторов. В 2009 году производство жёстких дисков было полностью передано компании Toshiba[14]

Подразделение IBM, диски которого доселе считались практически эталонными, после фатальных неудач, связанных с массовыми отказами дисков для настольных компьютеров в начале 2000-х (окислялись контакты неудачно выполненного разъёма гермобанки), купила фирма Hitachi.

Достаточно яркий след в истории жёстких дисков оставила компания Quantum, но и она в начале 2000-х потерпела неудачи, даже ещё более фатальные, чем IBM и Fujitsu — в жёстких дисках Quantum серии CX выходила из строя микросхема коммутатора головок, расположенная в гермобанке диска, что приводило к весьма дорогостоящему извлечению данных с вышедшего из строя диска.

Одним из лидеров в производстве дисков являлась компания Maxtor. В 2001 году Maxtor выкупила подразделение жёстких дисков компании Quantum и тоже не избежала проблем с репутацией из-за так называемых «тонких» дисков. В 2006 году состоялось слияние Seagate и Maxtor.

Весной 2011 года производство Hitachi приобрела компания Western Digital[15]; в то же время Samsung продала своё HDD-подразделение компании Seagate[16]. На 2011 год осталось всего 3 производителя — Seagate, Western Digital и Toshiba (которая является основным производителем 2,5- и 1,8-дюймовых дисков для ноутбуков).[источник не указан 899 дней] В настоящее время, в связи с продвижением на рынок внешних накопителей и развитием технологий типа SSD, количество фирм, предлагающих готовые решения, вновь возросло.

Рынок жёстких дисков[править | править исходный текст]

Последствия наводнения в Таиланде (2011)

В результате наводнения в Таиланде 2011 года были затоплены несколько индустриальных зон, где расположены заводы по производству жёстких дисков, что, по мнению экспертов, вызвало дефицит жёстких дисков на мировом рынке.[17] По оценкам Piper Jaffray, в IV квартале 2011 года дефицит жёстких дисков на мировом рынке составит 60-80 миллионов единиц при объёме спроса в 180 миллионов, по состоянию на 9 ноября 2011 года цены на жёсткие диски уже выросли в пределах от 10 до 60 %.[18]

1 декабря 2011 года компания Western Digital отчиталась о работах по восстановлению производства в Таиланде и предложила свою оценку состояния отрасли накопителей на жёстких дисках в четвёртом квартале 2011 года и на последующие периоды[19].

Низкоуровневое форматирование[править | править исходный текст]

На заключительном этапе сборки устройства поверхности пластин форматируются — на них формируются дорожки и секторы. Конкретный способ определяется производителем и/или стандартом, но, как минимум, на каждую дорожку наносится магнитная метка, обозначающая её начало.

Существуют утилиты, способные тестировать физические секторы диска, и ограниченно просматривать и править его служебные данные.[20] Конкретные возможности подобных утилит сильно зависят от модели диска и технических сведений, известных автору программного обеспечения соответствующего семейства моделей.[21]

Геометрия магнитного диска[править | править исходный текст]

Cylinder Head Sector.svg

С целью адресации пространства поверхности пластин диска делятся на дорожки — концентрические кольцевые области. Каждая дорожка делится на равные отрезки — секторы. Адресация CHS предполагает, что все дорожки в заданной зоне диска имеют одинаковое число секторов.

Цилиндр — совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задает используемую рабочую поверхность, а номер сектора — конкретный сектор на дорожке.

Чтобы использовать адресацию CHS, необходимо знать геометрию используемого диска: общее количество цилиндров, головок и секторов в нём. Первоначально эту информацию требовалось задавать вручную; в стандарте ATA-1 была введена функция автоопределения геометрии (команда Identify Drive).[22]

Влияние геометрии на скорость дисковых операций[править | править исходный текст]

Геометрия жёсткого диска влияет на скорость чтения записи. Ближе ко внешнему краю пластины диска возрастает длина дорожек (вмещается больше секторов) и, соответственно, количество данных, которые устройство может считать или записать за один оборот. При этом скорость чтения может изменяться от 210 до 30 Мб/с. Зная эту особенность, целесообразно размещать корневые разделы операционных систем именно здесь. Нумерация секторов начинается от внешнего края диска с нуля. В GParted внешний край диска располагается слева (на диаграмме) и сверху (в списке).

Особенности геометрии жёстких дисков со встроенными контроллерами[править | править исходный текст]

Зонирование[править | править исходный текст]

На пластинах современных «винчестеров» дорожки сгруппированы в несколько зон (англ. Zoned Recording). Все дорожки одной зоны имеют одинаковое количество секторов. Однако, на дорожках внешних зон секторов больше, чем на дорожках внутренних. Это позволяет, используя бо́льшую длину внешних дорожек, добиться более равномерной плотности записи, увеличивая ёмкость пластины при той же технологии производства.

Резервные секторы[править | править исходный текст]

Для увеличения срока службы диска на каждой дорожке могут присутствовать дополнительные резервные секторы. Если в каком-либо секторе возникает неисправимая ошибка, то этот сектор может быть подменён резервным (англ. remapping). Данные, хранившиеся в нём, при этом могут быть потеряны или восстановлены при помощи ECC, а ёмкость диска останется прежней. Существует две таблицы переназначения: одна заполняется на заводе, другая — в процессе эксплуатации. Границы зон, количество секторов на дорожку для каждой зоны и таблицы переназначения секторов хранятся в ПЗУ блока электроники.

Логическая геометрия[править | править исходный текст]

По мере роста емкости выпускаемых жёстких дисков их физическая геометрия перестала вписываться в ограничения, накладываемые программными и аппаратными интерфейсами (см.: Объём жёсткого диска). Кроме того, дорожки с различным количеством секторов несовместимы со способом адресации CHS. В результате контроллеры дисков стали сообщать не реальную, а фиктивную, логическую геометрию, вписывающуюся в ограничения интерфейсов, но не соответствующую реальности. Так, максимальные номера секторов и головок для большинства моделей берутся 63 и 255 (максимально возможные значения в функциях прерывания BIOS INT 13h), а число цилиндров подбирается соответственно ёмкости диска. Сама же физическая геометрия диска не может быть получена в штатном режиме работы[23] и другим частям системы неизвестна.

Адресация данных[править | править исходный текст]

Минимальной адресуемой областью данных на жёстком диске является сектор. Размер сектора традиционно равен 512 байт.[24] В 2006 году IDEMA объявила о переходе на размер сектора 4096 байт, который планируется завершить к 2010 году.[25]

Компания Western Digital уже сообщила[26] о начале использования новой технологии форматирования, названной Advanced Format, и выпустила серию накопителей, использующих новую технологию. К этой серии относятся линейки AARS/EARS и BPVT.

Перед использованием накопителя с технологией Advanced Format для работы в Windows XP необходимо выполнить процедуру выравнивания с помощью специальной утилиты.[27] Если разделы на диске создаются Windows Vista, Windows 7 и Mac OS выравнивание не требуется.[28]

В Windows Vista, Windows 7, Windows Server 2008 и Windows Server 2008 R2 присутствует ограниченная поддержка дисков с увеличенным размером сектора.[29][30]

Существует 2 основных способа адресации секторов на диске: цилиндр-головка-сектор (англ. cylinder-head-sector, CHS) и линейная адресация блоков (англ. linear block addressing, LBA).

CHS[править | править исходный текст]

При этом способе сектор адресуется по его физическому положению на диске 3 координатами — номером цилиндра, номером головки и номером сектора. В дисках объёмом больше 528 482 304 байт (504 Мб) со встроенными контроллерами эти координаты уже не соответствуют физическому положению сектора на диске и являются «логическими координатами» (см. выше).

LBA[править | править исходный текст]

При этом способе адрес блоков данных на носителе задаётся с помощью логического линейного адреса. LBA-адресация начала внедряться и использоваться в 1994 году совместно со стандартом EIDE (Extended IDE). Необходимость LBA была вызвана, в частности, появлением дисков больших объёмов, которые нельзя было полностью использовать с помощью старых схем адресации.

\mathrm{LBA} = \bigl( (\mathrm{Cylinder} \times \mathrm{No\ of\ \mathrm{heads}} + \mathrm{heads}) \times \mathrm{sectors/track} \bigr) + (\mathrm{Sector}-1)

Метод LBA соответствует Sector Mapping для SCSI. BIOS SCSI-контроллера выполняет эти задачи автоматически, то есть для SCSI-интерфейса метод логической адресации был характерен изначально.

Технологии записи данных[править | править исходный текст]

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке за счёт электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряжённости магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).

Метод продольной записи[править | править исходный текст]

Биты информации записываются с помощью маленькой головки, которая, проходя над поверхностью вращающегося диска, намагничивает миллиарды горизонтальных дискретных областей — доменов. При этом вектор намагниченности домена расположен продольно, то есть параллельно поверхности диска. Каждая из этих областей является логическим нулём или единицей, в зависимости от направления намагниченности.

Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см². К 2010 году этот метод был практически вытеснен методом перпендикулярной записи.

Метод перпендикулярной записи[править | править исходный текст]

Метод перпендикулярной записи — это технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у дисков на 2009 год — 400 Гбит/дюйм² (62 Гбит/см²).[31]. Теоретический предел технологии составляет 1 Тбит на квадратный дюйм.

Жёсткие диски с перпендикулярной записью доступны на рынке с 2005 года.

Метод тепловой магнитной записи[править | править исходный текст]

Метод тепловой магнитной записи (англ. Heat-assisted magnetic recording, HAMR) на данный момент самый перспективный из существующих, сейчас он активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На 2009 год были доступны только экспериментальные образцы, плотность записи которых составляла 150 Гбит/см².[32] Специалисты Hitachi называет предел для этой технологии в 2,3−3,1 Тбит/см², представители Seagate Technology — 7,75 Тбит/см².[33]

Структурированные носители данных[править | править исходный текст]

Структурированный (паттернированный) носитель данных (англ. Bit patterned media), — перспективная технология хранения данных на магнитном носителе, использующая для записи данных массив одинаковых магнитных ячеек, каждая из которых соответствует одному биту информации, в отличие от современных технологий магнитной записи, в которых бит информации записывается на нескольких магнитных доменах.

Сравнение интерфейсов[править | править исходный текст]

Пропускная способность, Гбит/с Максимальная длина кабеля, м Требуется ли кабель питания Количество накопителей на канал Число проводников в кабеле Другие особенности
UltraATA/133 1,2 0,46 Да (3,5") / Нет (2,5") 2 40/80 Controller+2Slave, горячая замена невозможна
SATA-300 2,4 1 Да 1 7 Host/Slave, возможна горячая замена на некоторых контроллерах
SATA-600 4.8 нет данных Да 1 7
FireWire/400 0.4 4,5 (при последовательном соединении до 72 м) Да/Нет (зависит от типа интерфейса и накопителя) 63 4/6 устройства равноправны, горячая замена возможна
FireWire/800 0.8 4,5 (при последовательном соединении до 72 м) Да/Нет (зависит от типа интерфейса и накопителя) 63 9 устройства равноправны, горячая замена возможна
USB 2.0 0.480

реально 0.25

5 (при последовательном соединении, через хабы, до 72 м) Да/Нет (зависит от типа накопителя) 127 4 Host/Slave, горячая замена возможна
USB 3.0 4.8 нет данных Да/Нет (зависит от типа накопителя) нет данных 9 Двунаправленный, совместим с USB 2.0
Ultra-320 SCSI 2.560 12 Да 16 50/68 устройства равноправны, горячая замена возможна
SAS 2.4 8 Да Свыше 16384 горячая замена; возможно подключение SATA-устройств в SAS-контроллеры
eSATA 2.4 2 Да 1 (с умножителем портов до 15) 7 Host/Slave, горячая замена возможна

История прогресса накопителей[править | править исходный текст]

Шесть типоразмеров жёстких дисков. Для масштаба рядом лежит дюймовая линейка
  • 1956 год — жёсткий диск IBM 350 в составе первого серийного компьютера IBM 305 RAMAC. Накопитель занимал ящик размером с большой холодильник и имел вес 971 кг, а общий объём памяти 50 вращавшихся в нём покрытых чистым железом тонких дисков диаметром 610 мм составлял около 5 миллионов 6-битных слов (3,5 Мб в пересчёте на 8-битные слова — байты).
  • 1980 год — первый 5,25-дюймовый Winchester, Shugart ST-506, 5 Мб.
  • 1981 год — 5,25-дюймовый Shugart ST-412, 10 Мб.
  • 1985 год — стандарт ESDI, доработанный стандарт ST-412
  • 1986 год — стандарты SCSI, ATA (IDE).
  • 1990 год — максимальная ёмкость 320 Мб.
  • 1995 год — максимальная ёмкость 2 Гб.
  • 1997 год — максимальная ёмкость 10 Гб.
  • 1998 год — стандарты UDMA/33 и ATAPI.
  • 1999 год — IBM выпускает Microdrive ёмкостью 170 и 340 Мб.
  • 2000 год — IBM выпускает Microdrive ёмкостью 500 Мб и 1 Гб.
  • 2002 год — стандарт ATA/ATAPI-6 и накопители емкостью свыше 137 Гб.
  • 2003 год — появление SATA.
  • 2003 год — Hitachi выпускает Microdrive ёмкостью 2 Гб.
  • 2004 год — Seagate выпускает ST1 — аналог Microdrive ёмкостью 2,5 и 5 Гб.
  • 2005 год — максимальная ёмкость 500 Гб.
  • 2005 год — стандарт Serial ATA 3G (или SATA II).
  • 2005 год — появление SAS (Serial Attached SCSI).
  • 2005 год — Seagate выпускает ST1 — аналог Microdrive ёмкостью 8 Гб.
  • 2006 год — применение перпендикулярного метода записи в коммерческих накопителях.
  • 2006 год — появление первых «гибридных» жёстких дисков, содержащих блок флеш-памяти.
  • 2006 год — Seagate выпускает ST1 — аналог Microdrive ёмкостью 12 Гб.
  • 2007 год — Hitachi представляет первый коммерческий накопитель ёмкостью 1 Тб.
  • 2009 год — на основе 500-гигабайтных пластин Western Digital, затем Seagate выпустили модели ёмкостью 2 Тб.[34]
  • 2009 год — Samsung выпустила первые жёсткие диски с интерфейсом USB 2.0[35]
  • 2009 год — Western Digital объявила о создании 2,5-дюймовых HDD объёмом 1 Тб (плотность записи — 333 Гб на одной пластине).[36]
  • 2009 год — появление стандарта SATA 3.0 (SATA 6G).
  • 2010 год — Seagate выпускает жёсткий диск объёмом 3 Тб.[5]
  • 2010 год — Samsung выпускает жёсткий диск с пластинами, у которых плотность записи — 667 Гб на одной пластине[37]
  • 2011 год — Western Digital выпустила первый диск на 750-Гб пластинах.[38]
  • 2011 год — Hitachi выпустила первый диск на 1 Тб пластинах.[39]
  • 2012 год — Western Digital выпустила первый диск на 4 Тб .[40]
  • 2013 год — Western Digital выпускает диск на 6 ТБ. Используя 7 пластин, вместо 5.[41]


См. также[править | править исходный текст]

Примечания[править | править исходный текст]

  1. Reference Guide — Hard Disk Drives (англ.). — Обзор технологии жёстких дисков. Проверено 28 июля 2009. Архивировано из первоисточника 23 августа 2011.
  2. http://www.storagereview.com/guide/histEarly.html Reference Guide — Hard Disk Drives — Early Disk Drives (англ.)
  3. IBM Archives: IBM 3340 direct access storage facility
  4. Жёсткий диск или винчестер?
  5. 1 2 Seagate представила жёсткий диск ёмкостью 4 Тб
  6. Medalist 545XE (англ.)(недоступная ссылка — история). Seagate (17 августа 1994). Проверено 8 декабря 2008. Архивировано из первоисточника 9 мая 2008.(недоступная ссылка — история) В спецификации диска Medalist 545xe (Seagate ST3660A) заявлены параметры: форматированный объём 545,5 Мб и геометрия 1057 цилиндров×16 головок×63 сектора×512 байт в секторе = 545 513 472 байт. Однако заявленный объём 545,5 из геометрии получается только если её поделить на 1000×1000; при делении на 1024×1024 получается значение 520,2.
    Barracuda 7200.9 320 GB PATA hard drive (ST3320833A) (англ.). Seagate. — закладка Technical Specifications. Проверено 8 декабря 2008. Архивировано из первоисточника 23 августа 2011. Другой пример: заявлен объём 320 Гб и количество доступных секторов 625 142 448. Однако если количество секторов умножить на их размер (512), то в результате получится 320 072 933 376. «320» отсюда получаются только делением на 1000³, при делении на 1024³ получается только 298.
  7. База знаний Seagate. Стандарты измерения ёмкости запоминающего устройства (рус.)
  8. Support | HGST, a Western Digital Company
  9. http://www.seagate.com/products/notebook/momentus.html (недоступная ссылка — история)
  10. Обзор Scythe Quiet Drive на thg.ru
  11. Устройство жёсткого диска. R.LAB (23 июня 2010). Архивировано из первоисточника 3 февраля 2012.
  12. 1 2 Разборки с винчестером (вникаем в суть жёстких дисков), части 1-3 / Публикации / hi-Tech
  13. Привод головок жесткого диска и система их позиционирования
  14. News Release 1 Oct, 2009 // Toshiba
  15. Пресс-релиз HGST // Western Digital
  16. Seagate завершает приобретения подразделения по производству жёстких дисков компании Samsung // Seagate
  17. Стихия в Таиланде спровоцирует мировой дефицит жёстких дисков. Вести.ru (23 октября 2011). Проверено 24 октября 2011. Архивировано из первоисточника 3 февраля 2012.
  18. Эксперты: дефицит жёстких дисков только усилится. Вести.ru (9 ноября 2011). Проверено 9 ноября 2011. Архивировано из первоисточника 3 февраля 2012.
  19. WD представила обновленный прогноз финансовых показателей на четвёртый квартал и отчёт о работах по восстановлению производства в Таиланде — Пресс-релиз
  20. Коллекция утилит для низкоуровневой диагностики и ремонта жёстких дисков.  ???. Проверено ???. Архивировано из первоисточника 23 августа 2011.
  21. Утилита диагностики и ремонта жёстких дисков UDMA-3000 с модулями для множества моделей.  ???. Проверено ???. Архивировано из первоисточника 23 августа 2011.
  22. X3T10 791D Revision 4c Working Draft (англ.). American National Standard for Information Technology — AT Attachment Interface for Disk Drives. Technical Committee of the International Committee on Information Technology Standards. — Черновик стандарта ANSI X3.221 — 199x. Проверено 16 апреля 2012.
  23. В спецификациях АТА и SCSI отсутствуют команды для этого
  24. Во всех серийно используемых стандартах, начиная с ST-506/ST-412, разработанного в начале 1980-х годов.
  25. IDEMA Announces a New Sector Length Standard(недоступная ссылка — история).  ??? (22 марта 2006). Проверено 18 июня 2009. Архивировано из первоисточника 18 августа 2006.(недоступная ссылка — история)
  26. The page is no longer available
  27. WD Align Tool
  28. Product Features
  29. Windows Vista support for large-sector hard disk drives. Microsoft (29 мая 2007). Проверено 14 апреля 2011. Архивировано из первоисточника 23 августа 2011.
  30. Information about Microsoft support policy for large sector drives in Windows (англ.). Microsoft (4 марта 2011). Проверено 14 апреля 2011. Архивировано из первоисточника 23 августа 2011.
  31. 2,4 Тбит на квадратный дюйм к 2014 году 3DNews
  32. TDK освоила 1 терабит на квадратный дюйм 3DNews
  33. Д. Анисимов, Е. Патий. Индустрия жёстких дисков: дальше — больше // «Экспресс Электроника». — 2007. — № 3.
  34. Выпущен двухтерабайтный винчестер Лента.ру
  35. Samsung: 1.8" Spinpoint N3U HDD With Native USB (англ.)
  36. Western Digital Releases 1TB 2.5-inch Laptop Hard Drive (англ.)
  37. Новости Hardware | Новости и статьи | Ф-Центр
  38. Ф-Центр: Новый виток эволюции: 3-ТБ жёсткие диски
  39. Hitachi начинает выпуск жёстких дисков емкостью 1 ТБ с одной пластиной
  40. Western Digital представила новые жёсткие диски объёмом до 4 Тб
  41. Digital enlists helium for 6TB energy-efficient drives

Литература[править | править исходный текст]

  • Скотт Мюллер. Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17-е изд. — М.: Вильямс, 2007. — С. 653—700. — ISBN 0-7897-3404-4

Ссылки[править | править исходный текст]