Теория принятия решений

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Тео́рия приня́тия реше́ний — область исследования, вовлекающая понятия и методы математики, статистики, экономики, менеджмента и психологии с целью изучения закономерностей выбора людьми путей решения разного рода задач, а также способов поиска наиболее выгодных из возможных решений.

Принятие решения — это процесс рационального или иррационального выбора альтернатив, имеющий целью достижение осознаваемого результата. Различают нормативную теорию, которая описывает рациональный процесс принятия решения и дескриптивную теорию, описывающую практику принятия решений.

Процесс выбора альтернатив[править | править вики-текст]

Рациональный выбор альтернатив состоит из следующих этапов:

  1. Ситуационный анализ;
  2. Идентификация проблемы и постановка цели;
  3. Поиск необходимой информации;
  4. Формирование альтернатив;
  5. Формирование критериев для оценки альтернатив;
  6. Проведение оценки;
  7. Выбор наилучшей альтернативы;
  8. Внедрение (исполнение);
  9. Разработка критериев (индикаторов) для мониторинга;
  10. Мониторинг исполнения;
  11. Оценка результата.

Иррациональный выбор альтернатив включает все те же составляющие, но в таком «сжатом» виде, что трассирование причинно-следственных связей становится невозможным.

Проблема эргодичности[править | править вики-текст]

Для того, чтобы делать «строгие» статистически достоверные прогнозы на будущее, нужно получить выборку из будущих данных. Так как это невозможно, то многие специалисты предполагают, что выборки из прошлых и текущих, например, рыночных индикаторов равнозначны выборке из будущего. Иными словами, если встать на такую точку зрения, то получится, что прогнозируемые показатели — лишь статистические тени прошлых и текущих рыночных сигналов. Такой подход сводит работу аналитика к выяснению, каким образом участники рынка получают и обрабатывают рыночные сигналы. Без устойчивости рядов нельзя делать обоснованных выводов. Но это вовсе не значит, что ряд должен быть устойчив во всем. Например, он может иметь устойчивые дисперсии и совершенно нестационарные средние — в этом случае мы будем делать выводы только о дисперсии, в обратном случае только о среднем. Устойчивости могут носить и более экзотический характер. Поиск устойчивостей в рядах и есть одна из задач статистики.

Если лица, принимающие решения, полагают, что процесс не является стационарным (устойчивым), а следовательно, эргодическим, и даже если они считают, что вероятностные функции распределения инвестиционных ожиданий все-таки могут быть просчитаны, то эти функции «подвержены внезапным (то есть непредсказуемым) изменениям» и система, по существу, непредсказуема.

Принятие решений в условиях неопределённости[править | править вики-текст]

Условиями неопределённости считается ситуация, когда результаты принимаемых решений неизвестны. Неопределённость подразделяется на стохастическую (имеется информация о распределении вероятности на множестве результатов), поведенческую (имеется информация о влиянии на результаты поведения участников), природную (имеется информация только о возможных результатах и отсутствует о связи между решениями и результатами) и априорную (нет информации и о возможных результатах). Задача обоснования решений в условиях неопределённости всех типов, кроме априорной, сводится к сужению исходного множества альтернатив на основе информации, которой располагает лицо, принимающее решение (ЛПР). Качество рекомендаций для принятия решений в условиях стохастической неопределённости повышается при учёте таких характеристик личности ЛПР, как отношение к своим выигрышам и проигрышам, склонность к риску. Обоснование решений в условиях априорной неопределённости возможно построением алгоритмов адаптивного управления[1].

Выбор в условиях неопределённости[править | править вики-текст]

Эта область представляет ядро теории принятия решений.

Термин «ожидаемая ценность» (теперь называется математическое ожидание) был известен с XVII века. Блез Паскаль использовал это в описании известного пари (см. ниже), которое содержится в его работе «Мысли о религии и других предметах», изданной в 1670. Идея ожидаемой ценности заключается в том, что перед лицом множества действий, когда каждое из них может дать несколько возможных результатов с различными вероятностями, рациональная процедура должна идентифицировать все возможные результаты, определить их ценности (положительные или отрицательные, доходы или затраты) и вероятности, затем перемножить соответствующие ценности и вероятности и сложить, чтобы дать в итоге «ожидаемую ценность». Действие, которое будет выбрано, должно давать наибольшую ожидаемую ценность.

В 1738, Даниил Бернулли опубликовал влиятельную статью, названную «Изложение новой теории измерения риска» (Exposition of a New Theory on the Measurement of Risk), в котором он использует Санкт-Петербургский парадокс, чтобы показать, что теория ожидаемой ценности должна быть нормативно неправильной. Он также даёт пример, в котором голландский торговец пробует решить, застраховать ли груз, посылаемый из Амстердама в Санкт-Петербург зимой, когда известно, что есть 5%-ный шанс, что судно и груз будут потеряны. В его решении, он определяет функцию полезности и вычисляет ожидаемую полезность, а не ожидаемую финансовую ценность.

В XX столетии, интерес был повторно подогрет работой Абрахама Вальда (1939), указывающей, что две центральных проблемы ортодоксальной статистической теории, а именно, проверка статистических гипотез и статистическая теория оценивания, могли обе быть расценены как специфические специальные случаи более общей теории принятия решений. Эта работа вводила большую часть «ментального пейзажа» современной теории принятия решений, включая функции потери, функции риска, допустимые решающие правила, априорные распределения, байесовские правила решения, и минимаксные решающие правила. Термин «теория принятия решений» непосредственно начал использоваться в 1950 году Э. Л. Леманном.

Возникновение теории субъективной вероятности из работ Фрэнка Рамсея, Бруно де Финетти, Леонарда Сэвиджа и других, расширяет возможности теории ожидаемой полезности до ситуаций, где доступны только субъективные вероятности. В то же время раньше в экономике вообще предполагалось, что люди ведут себя как рациональные агенты и таким образом теория ожидаемой полезности также продвинула теорию реального человеческого поведенческого принятия решения при риске. Работа Мориса Алле и Даниэля Эллсберга показала, что это было не так очевидно.

Теория перспектив Дэниэла Канемана и Амоса Тверски помещает поведенческую экономику на более прочную опору свидетельств. Эта теория указала, что в фактическом человеческом принятии решений (в противоположность нормативному) «потери чувствительнее выигрышей». Кроме того, люди более сосредоточены на «изменениях» полезности своих состояний, чем на полезности самих состояний, а оценка соответствующих субъективных вероятностей заметно смещена относительно присущей каждому «точки отсчёта».

Пари Паскаля — выбор при неопределённости[править | править вики-текст]

Пари Паскаля — один из примеров выбора при неопределённости. Неопределённость, согласно Паскалю, — существует или нет Бог. Как утверждают религиозные деятели, личная вера или неверие в Бога — выбор, который должен быть сделан каждым. Паскаль утверждает, что выгодность веры в Бога, если Бог существует, бесконечна. Из этого в своих рассуждениях он делает вывод, что несмотря на то, что вероятность существования Бога не так велика, и ожидаемые издержки при вере превышают издержки при неверии, в Бога выгоднее верить. Но позже правильность и разумность его рассуждений была поставлена под сомнение, а также было указано на то, что с помощью его методов выбора можно прийти к решению «верить» по отношению к любому Богу и к любому суеверию.

Критика Пари Паскаля — выбор при неопределённости[править | править вики-текст]

Ричард Докинз отмечает, что пари Паскаля основано на допущении, что богу лестна вера в него и он готов это вознаградить. Даже если допустить вознаграждение верующих, то нет гарантий, что приз будет иметь бесконечно большую ценность. Таким образом, условия пари не гарантируют, что верующий действительно находится в более выгодном положении, нежели неверующий[2]. От того, каково это допущение, может существенно изменяться вывод. Так, к примеру, можно допустить, что за выбор в пользу веры из-за корыстного ожидания вечной жизни, вместо награды полагается наказание, как и за прочие корыстные поступки. Тогда в ситуации, когда Бог существует, любой выбор заранее оказывается проигрышным, поскольку выбиравший будет непременно наказан либо за своё неверие, либо за корыстные ожидания. Если же Бога действительно нет, то в случае нашей веры мы получаем финансовые издержки, ограничительные правила и горечь разочарования, а в случае неверия — свободу, экономию и спокойствие. Иными словами, при таком допущении лучше не верить в Бога.

Ошибки первого и второго рода[править | править вики-текст]

Разделение ошибочных решений на ошибки первого и второго рода вызвано тем, что последствия от разного рода ошибочных решений принципиально различаются в части того, что упущенный выигрыш оказывает меньшее влияние на ситуацию, чем реализованный проигрыш. Например, для биржевого трейдера последствия того, что акции не были куплены, когда их следовало покупать, отличаются от последствий ситуации, когда акции были куплены, но покупать их не следовало. Первая ситуация может означать упущенную выгоду, вторая — прямые потери вплоть до разорения трейдера. Аналогично для политика отказ от захвата власти в революционной ситуации отличается по последствиям от проигранной попытки захватить власть. Для генерала начать военную операцию, которая будет проиграна, гораздо хуже, чем упустить ситуацию, когда можно было провести успешную операцию. Вместе с тем, классификация ошибок первого и второго рода допустима только в ситуациях, когда ведется точный учёт и анализ рисков. Так, С. Гафуров отмечал для ситуации биржевых брокеров: «Многие полагают, что стратегическая задача аналитических служб (в отличие от прочих подразделений инвестиционных компаний) — не увеличение прибыли, а минимизация возможных потерь. И это принципиальное отличие. С точки зрения теории игр оптимальные решения аналитиков должны отличаться от оптимальных трейдерских действий. Предполагается, что оптимальные стратегии, реализованные в рекомендациях аналитиков, исходят из принципа минимизации максимальных проигрышей (минимакса), в то время как для трейдеров минимакс — неприемлемая стратегия (минимизация максимального проигрыша на рынке — не играть), и в общем виде оптимизация решений трейдеров формализуется только с точки зрения байесовского подхода. Отсюда и необходимость специальных функциональных подразделений, обеспечивающих баланс стратегий, — управляющих фондами. Компании ожидают от фондовых аналитиков непредвзятых прогнозов и обоснованных рекомендаций. Одни свойства таких прогнозов очевидны: точность, достоверность. Другие, такие как воспроизводимость, методологическая корректность или робастность (независимость результатов прогноза от системы координат), часто остаются вне поля зрения как специалистов, делающих прогнозы, так и тех, кто эти прогнозы оценивает»[3].

Альтернативы теории вероятностей[править | править вики-текст]

Очень спорная проблема — можно ли заменить использование вероятности в теории решения другими альтернативами. Сторонники нечёткой логики, теории возможностей, теории очевидностей Демпстера-Шафера и др. поддерживают точку зрения, что вероятность — только одна из многих альтернатив, и указывают на многие примеры, где нестандартные альтернативы использовались с явным успехом. Защитники теории вероятностей указывают на:

  • работу Ричарда Трелкелда Кокса по оправданию аксиом теории вероятностей;
  • парадоксы Бруно де Финетти как иллюстрацию теоретических трудностей, которые могут возникнуть благодаря отказу от аксиом теории вероятностей;
  • теоремы совершенных классов, которые показывают, что все допустимые решающие правила эквивалентны байесовскому решающему правилу с некоторым априорным распределением (возможно, неподходящим) и некоторой функции полезности. Таким образом, для любого решающего правила, порожденного невероятностными методами, либо есть эквивалентное байесовское правило, либо есть байесовское правило, которое никогда не хуже, но (по крайней мере) иногда и лучше.

Действительнозначность вероятностной меры под сомнение была поставлена только однажды — Дж. М. Кейнсом в его трактате «Вероятность» (1910 год). Но сам автор в 30-х годах назвал эту работу «самой худшей и наивной» из его работ. И в 30-х годах стал активным приверженцем аксиоматики Колмогорова — Р. фон Мизеса и никогда не ставил её под сомнение. Конечность вероятности и счётная аддитивность — это сильные ограничения, но попытка убрать их, не разрушив здания всей теории, оказались тщетными. Это в 1974 году признал один из самых ярких критиков аксиоматики Колмогорова — Бруно де Финетти.

Более того, он показал фактически обратное — отказ от счётной аддитивности делает невозможными операции интегрирования и дифференцирования и, следовательно, не даёт возможности использовать аппарат математического анализа в теории вероятностей. Поэтому задача отказа от счетной аддитивности — это не задача реформирования теории вероятностей, это задача отказа от использования методов математического анализа при исследовании реального мира.

Попытки же отказаться от конечности вероятностей привели к построению теории вероятностей с несколькими вероятностными пространствами на каждом, из которых выполнялись аксиомы Колмогорова, но суммарно вероятность уже не должна была быть конечной. Но пока неизвестно каких-либо содержательных результатов, которые могли бы быть получены в рамках этой аксиоматики, но не в рамках аксиоматики Колмогорова. Поэтому это обобщение аксиом Колмогорова пока носит чисто схоластический характер.

С. Гафуров полагал, что принципиальным отличием теории вероятности Кейнса (а, следовательно, и мат. статистики) от колмогоровской (Фон Мизеса и пр.) является то, что Кейнс рассматривает статистику с точки зрения теории принятия решений для нестационарных рядов…. Для Колмогорова, Фон Мизеса, Фишера и пр. статистика и вероятность применяются для существенно стационарных и эргодичных (при правильно подобранных данных) рядов — окружающего нас физического мира…

Известно, что теория нечётких множеств англ. fuzzy sets в определённом смысле сводится к теории случайных множеств, то есть к теории вероятностей. Соответствующий цикл теорем приведён в книгах А. И. Орлова, в том числе указанных в списке литературы ниже.

Парадокс выбора[править | править вики-текст]

Во многих случаях наблюдается парадокс, когда больший выбор может привести к худшему решению или, вообще, к отказу принять решение. Иногда это теоретически объясняется тем, что называется «параличом анализа», реального или воспринятого, а также, возможно, «рациональным невежеством». Много исследователей, включая Шину С. Аенгара и Марка Р. Леппера (Sheena S. Iyengar and Mark R. Lepper), опубликовало исследования этого явления. (Goode, 2001)

Также у нас сейчас есть центральная проблема выбора — свобода выбора. В понимании Барри Шварца выбор не сделал нас свободнее, но ограничил, не сделал нас счастливее, но постоянно вызывает неудовлетворённость.

Моделирование принятия решений[править | править вики-текст]

Многоплановой моделью для исследования различных аспектов теории принятия решений являются деловые шахматы. При этом в качестве экспертных систем возможно применение существующих шахматных компьютерных программ.

Примечания[править | править вики-текст]

  1. С. Н. Воробьев, Е. С. Егоров, Ю. И. Плотников. Теоретические основы обоснования военно-технических решений, Москва, РВСН, 1994 год
  2. Докинз Р. Бог как иллюзия
  3. Cosi Fan Tutti Фондовые аналитики. «Рынок Ценных Бумаг» № 24/1997 г.(недоступная ссылка — история)

См. также[править | править вики-текст]

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]