Плотность
Плотность | |
---|---|
Размерность | L−3 M |
Единицы измерения | |
СИ | кг/м³ |
СГС | г/см³ |
Примечания | |
скалярная величина |
Пло́тность — скалярная физическая величина, определяемая как отношение массы тела к занимаемому этим телом объёму[1].
Для обозначения плотности обычно используется греческая буква ρ (ро) (происхождение обозначения подлежит уточнению), иногда используются также латинские буквы D и d (от лат. densitas — «плотность»).
Более точное определение плотности требует уточнение формулировки:
- Средняя плотность тела — отношение массы тела к его объёму. Для однородного тела она также называется просто плотностью тела.
- Плотность вещества — это плотность однородного или равномерно неоднородного тела, состоящего из этого вещества.
- Плотность тела в точке — это предел отношения массы малой части тела (), содержащей эту точку, к объёму этой малой части (), когда этот объём стремится к нулю[2], или, записывая кратко, . При таком предельном переходе необходимо помнить, что на атомарном уровне любое тело неоднородно, поэтому необходимо остановиться на объёме, соответствующем используемой физической модели.
Поскольку масса в теле может быть распределена неравномерно, более адекватная модель определяет плотность в каждой точке тела как производную массы по объёму. Если учитывать точечные массы, то плотность можно определить как меру, либо как производную Радона—Никодима по отношению к некоторой опорной мере.
Содержание
- 1 Виды плотности и единицы измерения
- 2 Формула нахождения плотности
- 3 Зависимость плотности от температуры
- 4 Диапазон плотностей в природе
- 5 Плотности астрономических объектов
- 6 Плотности некоторых газов
- 7 Плотности некоторых жидкостей
- 8 Плотность некоторых пород древесины
- 9 Плотность некоторых металлов
- 10 Измерение плотности
- 11 См. также
- 12 Примечания
- 13 Литература
- 14 Ссылки
Виды плотности и единицы измерения[править | править код]
Исходя из определения плотности, её размерность представляет собой кг/м³ в СИ и г/см³ в системе СГС.
Для сыпучих и пористых тел различают:
- истинную плотность, определяемую без учёта пустот;
- удельную (кажущуюся) плотность, рассчитываемую как отношение массы вещества ко всему занимаемому им объёму. Истинную плотность из кажущейся получают с помощью величины коэффициента пористости — доли объёма пустот в занимаемом объёме. Для сыпучих тел удельная плотность называется насыпно́й плотностью.
Формула нахождения плотности[править | править код]
Плотность (плотность однородного тела или средняя плотность неоднородного) находится по формуле:
где m — масса тела, V — его объём; формула является просто математической записью определения термина «плотность», данного выше.
- При вычислении плотности газов при нормальных условиях эта формула может быть записана и в виде:
- где М — молярная масса газа, — молярный объём (при нормальных условиях приближённо равен 22,4 л/моль).
Плотность тела в точке записывается как
тогда масса неоднородного тела (тела с плотностью, зависящей от координат) рассчитывается как
Зависимость плотности от температуры[править | править код]
Как правило, при уменьшении температуры плотность увеличивается, хотя встречаются вещества, чья плотность в определённом диапазоне температур ведёт себя иначе, например, вода, бронза и чугун. Так, плотность воды имеет максимальное значение при 4 °C и уменьшается как с повышением, так и с понижением температуры относительно этого значения.
При изменении агрегатного состояния плотность вещества меняется скачкообразно: плотность растёт при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Вода, кремний, висмут и некоторые другие вещества являются исключениями из данного правила, так как их плотность при затвердевании уменьшается.
Диапазон плотностей в природе[править | править код]
Для различных природных объектов плотность меняется в очень широком диапазоне.
- Самую низкую плотность имеет межгалактическая среда (2·10−31—5·10−31 кг/м³, без учёта тёмной материи)[3].
- Плотность межзвёздной среды приблизительно равна 10−23—10−21 кг/м³.
- Средняя плотность красных гигантов в пределах их фотосфер много меньше, чем у Солнца — из-за того, что их радиус в сотни раз больше при сравнимой массе.
- Плотность газообразного водорода (самого лёгкого газа) при нормальных условиях равна 0,0899 кг/м³.
- Плотность сухого воздуха при нормальных условиях составляет 1,293 кг/м³.
- Один из самых тяжёлых газов, гексафторид вольфрама, примерно в 10 раз тяжелее воздуха (12,9 кг/м³ при +20 °C)
- Жидкий водород при атмосферном давлении и температуре −253 °C имеет плотность 70 кг/м³.
- Плотность жидкого гелия при атмосферном давлении равна 130 кг/м³.
- Усреднённая плотность тела человека от 940—990 кг/м³ при полном вдохе, до 1010—1070 кг/м³ при полном выдохе.
- Плотность пресной воды при 4 °C 1000 кг/м³.
- Средняя плотность Солнца в пределах фотосферы около 1410 кг/м³, примерно в 1,4 раза выше плотности воды.
- Гранит имеет плотность 2600 кг/м³.
- Средняя плотность Земли равна 5520 кг/м³.
- Плотность железа равна 7874 кг/м³.
- Плотность металлического урана 19100 кг/м³.
- Плотность атомных ядер приблизительно 2·1017 кг/м³.
- Теоретически верхняя граница плотности по современным физическим представлениям это планковская плотность 5,1⋅1096 кг/м³.
Плотности астрономических объектов[править | править код]
- Средние плотности небесных тел Солнечной системы см. на врезке.
- Межпланетная среда в Солнечной системе достаточно неоднородна и может меняться во времени, её плотность в окрестностях Земли ~10−21÷10−20 кг/м³.
- Плотность межзвёздной среды ~10−23÷10−21 кг/м³.
- Плотность межгалактической среды 2×10−34÷5×10−34 кг/м³.
- Средняя плотность красных гигантов на много порядков меньше из-за того, что их радиус в сотни раз больше, чем у Солнца.
- Плотность белых карликов 108÷1012 кг/м³
- Плотность нейтронных звёзд имеет порядок 1017÷1018 кг/м³.
- Средняя (по объёму под горизонтом событий) плотность чёрной дыры зависит от её массы и выражается формулой:
- Средняя плотность падает обратно пропорционально квадрату массы чёрной дыры (ρ~M−2). Так, если чёрная дыра с массой порядка солнечной обладает плотностью около 1019 кг/м³, превышающей ядерную плотность (2×1017 кг/м³), то сверхмассивная чёрная дыра с массой в 109 солнечных масс (существование таких чёрных дыр предполагается в квазарах) обладает средней плотностью около 20 кг/м³, что существенно меньше плотности воды (1000 кг/м³).
Плотности некоторых газов[править | править код]
Азот | 1,250 | Кислород | 1,429 |
Аммиак | 0,771 | Криптон | 3,743 |
Аргон | 1,784 | Ксенон | 5,851 |
Водород | 0,090 | Метан | 0,717 |
Водяной пар (100 °C) | 0,598 | Неон | 0,900 |
Воздух | 1,293 | Радон | 9,81 |
Гексафторид вольфрама | 12,9 | Углекислый газ | 1,977 |
Гелий | 0,178 | Хлор | 3,164 |
Дициан | 2,38 | Этилен | 1,260 |
Для вычисления плотности произвольного идеального газа, находящегося в произвольных условиях, можно использовать формулу, выводящуюся из уравнения состояния идеального газа:[7]
- ,
где:
- — давление,
- — молярная масса,
- — универсальная газовая постоянная, равная приблизительно 8,314 Дж/(моль·К)
- — термодинамическая температура.
Плотности некоторых жидкостей[править | править код]
В этом разделе не хватает ссылок на источники информации. |
Бензин | 710 | Молоко | 1040 |
Вода (4 °C) | 1000 | Ртуть (0 °C) | 13600 |
Керосин | 820 | Диэтиловый эфир | 714 |
Глицерин | 1260 | Этанол | 789 |
Морская вода | 1030 | Скипидар | 860 |
Масло оливковое | 920 | Ацетон | 792 |
Масло моторное | 910 | Серная кислота | 1835 |
Нефть | 550—1050 | Жидкий водород (−253 °C) | 70 |
Плотность некоторых пород древесины[править | править код]
Бальса | 0,15 | Пихта сибирская | 0,39 |
Секвойя вечнозелёная | 0,41 | Ель | 0,45 |
Ива | 0,46 | Ольха | 0,49 |
Осина | 0,51 | Сосна | 0,52 |
Липа | 0,53 | Конский каштан | 0,56 |
Каштан съедобный | 0,59 | Кипарис | 0,60 |
Черёмуха | 0,61 | Лещина | 0,63 |
Грецкий орех | 0,64 | Берёза | 0,65 |
Вишня | 0,66 | Вяз гладкий | 0,66 |
Лиственница | 0,66 | Клён полевой | 0,67 |
Тиковое дерево | 0,67 | Бук | 0,68 |
Груша | 0,69 | Дуб | 0,69 |
Свитения (Махагони) | 0,70 | Платан | 0,70 |
Жостер (крушина) | 0,71 | Тис | 0,75 |
Ясень | 0,75 | Слива | 0,80 |
Сирень | 0,80 | Боярышник | 0,80 |
Пекан (кария) | 0,83 | Сандаловое дерево | 0,90 |
Самшит | 0,96 | Эбеновое дерево | 1,08 |
Квебрахо | 1,21 | Бакаут | 1,28 |
Пробка | 0,20 |
Плотность некоторых металлов[править | править код]
Значения плотности металлов могут изменяться в весьма широких пределах: от наименьшего значения у лития, который легче воды, до наибольшего значения у осмия, который тяжелее золота и платины.
Осмий | 22,61[8] | Родий | 12,41[9] | Хром | 7,19[10] |
Иридий | 22,56[11] | Палладий | 12,02[12] | Германий | 5,32[13] |
Плутоний | 19,84[14] | Свинец | 11,35[15] | Алюминий | 2,70[16] |
Платина | 19,59[17] | Серебро | 10,50[18] | Бериллий | 1,85[19] |
Тантал | 19,30[20] | Медь | 8,94[21] | Цезий | 1,84[22] |
Золото | 19,30[15] | Никель | 8,91[23] | Рубидий | 1,53[24] |
Уран | 19,05[25] | Кобальт | 8,86[26] | Натрий | 0,97[27] |
Ртуть | 13,53[28] | Железо | 7,87[29] | Калий | 0,86[30] |
Рутений | 12,45[31] | Марганец | 7,44[32] | Литий | 0,53[33] |
Измерение плотности[править | править код]
Для измерений плотности используются:
- Пикнометр — прибор для измерения истинной плотности
- Различные виды ареометров — измерители плотности жидкостей.
- Бурик Качинского и бур Зайдельмана — приборы для измерения плотности почвы.
- Вибрационный плотномер — прибор для измерения плотности жидкости и газа под давлением.
Этот раздел не завершён. |
См. также[править | править код]
- Список химических элементов с указанием их плотности
- Удельный вес
- Удельная плотность
- Относительная плотность
- Объёмная плотность
- Конденсация
- Консистенция (лат. consistere — состоять) — состояние вещества, степень мягкости или плотности (твёрдости) чего-либо — полутвердых-полумягких веществ (масел, мыла, красок, строительных растворов и т. д.); наприм., глицерин имеет сиропообразную консистенцию.
- Консистометр — прибор для измерения в условных физических единицах консистенции различных коллоидных и желеобразных веществ, а также суспензий и грубодисперсных сред, к примеру, паст, линиментов, гелей, кремов, мазей.
- Концентрация частиц
- Концентрация растворов
- Плотность заряда
- Уравнение неразрывности
Примечания[править | править код]
- ↑ Существуют также поверхностная плотность (отношение массы к площади) и линейная плотность (отношение массы к длине), применяемые соответственно к плоским (двумерным) и вытянутым (одномерным) объектам.
- ↑ Подразумевается также, что область стягивается к точке, то есть, не только её объём стремится к нулю (что могло бы быть не только при стягивании области к точке, но, например, к отрезку), но также стремится к нулю и её диаметр (максимальный линейный размер).
- ↑ Агекян Т. А. Расширение Вселенной. Модель Вселенной // Звёзды, галактики, Метагалактика. 3-е изд. / Под ред. А. Б. Васильева. — М.: Наука, 1982. — 416 с. — С. 249.
- ↑ Planetary Fact Sheet (англ.)
- ↑ Sun Fact Sheet (англ.)
- ↑ Stern, S. A.; et al. (2015). “The Pluto system: Initial results from its exploration by New Horizons”. Science. 350 (6258): 249—352. DOI:10.1126/science.aad1815.
- ↑ МЕХАНИКА. МОЛЕКУЛЯРНАЯ ФИЗИКА. Учебно-методическое пособие к лабораторным работам № 1-51, 1-61, 1-71, 1-72 . Санкт-Петербургский Государственный Технологический Университет Растительных Полимеров (2014). Проверено 4 января 2019.
- ↑ Krebs, 2006, p. 158.
- ↑ Krebs, 2006, p. 136.
- ↑ Krebs, 2006, p. 96.
- ↑ Krebs, 2006, p. 160.
- ↑ Krebs, 2006, p. 138.
- ↑ Krebs, 2006, p. 198.
- ↑ Krebs, 2006, p. 319.
- ↑ 1 2 Krebs, 2006, p. 165.
- ↑ Krebs, 2006, p. 179.
- ↑ Krebs, 2006, p. 163.
- ↑ Krebs, 2006, p. 141.
- ↑ Krebs, 2006, p. 67.
- ↑ Krebs, 2006, p. 151.
- ↑ Krebs, 2006, p. 111.
- ↑ Krebs, 2006, p. 60.
- ↑ Krebs, 2006, p. 108.
- ↑ Krebs, 2006, p. 57.
- ↑ Krebs, 2006, p. 313.
- ↑ Krebs, 2006, p. 105.
- ↑ Krebs, 2006, p. 50.
- ↑ Krebs, 2006, p. 168.
- ↑ Krebs, 2006, p. 101.
- ↑ Krebs, 2006, p. 54.
- ↑ Krebs, 2006, p. 134.
- ↑ Krebs, 2006, p. 98.
- ↑ Krebs, 2006, p. 47.
Литература[править | править код]
- Плотность — статья из Большой советской энциклопедии. — М.: «Советская Энциклопедия», 1975. — Т. 20. — С. 49.
- Плотность — статья из Физической энциклопедии. Т. 3, С. 637.
- Krebs R. E. The History and Use of Our Earth's Chemical Elements: A Reference Guide. 2nd edition. — Westport: Greenwood Publishing Group, 2006. — xxv + 422 p. — ISBN 0-313-33438-2.