Среднее степенное
Среднее степени d (или просто среднее степенное) — разновидность среднего значения. Для набора положительных вещественных чисел определяется как
При этом по принципу непрерывности относительно показателя d доопределяются следующие величины:
Среднее степенное является частным случаем Колмогоровского среднего.
Наряду с понятием «среднее степенное», используют также среднее степенное взвешенное некоторых величин.
Другие названия
[править | править код]Так как среднее степени d обобщает известные с древности (т. н. архимедовы) средние, то его часто называют средним обобщённым.
По связи с неравенствами Минковского и Гёльдера среднее степенное имеет также названия: среднее по Гёльдеру и среднее по Минковскому.
Частные случаи
[править | править код]Средние степеней ±1 и 2 имеют собственные имена:
- называется средним арифметическим;
(иначе говоря: средним арифметическим n чисел является их сумма, делённая на n)
- называется средним гармоническим.
(иначе говоря: средним гармоническим чисел является обратная величина к среднему арифметическому их обратных)
- называется средним квадратичным (квадратическим), известным так же под сокращением RMS (root-mean-square).
- В статистической практике также находят применение степенные средние третьего и более высоких порядков. Наиболее распространёнными из них являются среднее кубическое и среднее биквадратическое значения.
- Максимальное и минимальное число из набора положительных чисел выражаются как средние степеней и этих чисел:
Неравенство о средних
[править | править код]Неравенство о средних утверждает, что для любых
причём равенство достигается только в случае равенства всех аргументов .
Для доказательства неравенства о средних достаточно показать, что частная производная по неотрицательна и обращается в ноль только при (например, используя неравенство Йенсена), и далее применить формулу конечных приращений.
Неравенство о среднем арифметическом, геометрическом и гармоническом
[править | править код]Частным случаем неравенства о средних является неравенство о среднем арифметическом, геометрическом и гармоническом
где каждое из неравенств обращается в равенство только при .
См. также
[править | править код]Ссылки
[править | править код]- И. И. Жогин. О средних // Математическое просвещение. Вторая серия. — 1961. — Вып. 6. — С. 217—226.