Метод k-медиан

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Метод -медиан[1][2] — применяемая в статистике и машинном обучении вариация метода -средних для задач кластеризации, где для определения центроида кластера вместо среднего вычисляется медиана. Такой подход соответствует минимизации ошибки по всем кластерам в метрике с 1-нормой, вместо метрики с 2-нормой, используемой в стандартном методе -средних.

Задача определения -медиан состоит в поиске таких центров, что сформированные по ним кластеры будут наиболее «компактными». Формально, при заданных точках данных , центров должны быть выбраны так, чтобы минимизировать сумму расстояний от каждой до ближайшего .

Метод иногда работает лучше, чем метод -средних, где минимизируется сумма квадратов расстояний. Критерий суммы расстояний широко используется для транспортных задач[3].

Другая альтернатива — метод -медоидов, в котором ищут оптимальный медоид, а не медиану кластера (медоид является одной из точек данных, в то время как медианы таковыми быть не обязаны).

Ссылки[править | править код]

  1. A. K. Jain and R. C. Dubes, Algorithms for Clustering Data: Prentice-Hall, 1981.
  2. P. S. Bradley, O. L. Mangasarian, and W. N. Street, "Clustering via Concave Minimization, " in Advances in Neural Information Processing Systems, vol. 9, M. C. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, pp. 368—374.
  3. http://www.aladdin.cs.cmu.edu/reu/mini_probes/papers/facilitylocation.ppt