Гармонический ряд

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Гармонический ряд — сумма, составленная из бесконечного количества членов, обратных последовательным числам натурального ряда:

.

Ряд назван гармоническим, так как складывается из «гармоник»: -я гармоника, извлекаемая из скрипичной струны, — это основной тон, производимый струной длиной от длины исходной струны[1]. Еще точнее, каждый член ряда, начиная со второго, представляет собой среднее гармоническое двух соседних членов.

Сумма первых n членов ряда[править | править код]

Отдельные члены ряда стремятся к нулю, но его сумма расходится. n-той частичной суммой sn гармонического ряда называется n-тое гармоническое число:

Некоторые значения частичных сумм[править | править код]

Формула Эйлера[править | править код]

В 1740 году Эйлером было получено асимптотическое выражение для суммы первых членов ряда:

,

где  — постоянная Эйлера — Маскерони, а  — натуральный логарифм.

При значение , следовательно, для больших :

 — формула Эйлера для суммы первых членов гармонического ряда.
Пример использования формулы Эйлера
, (%)
10 2,93 2,88 1,7
25 3,82 3,80 0,5

Более точная асимптотическая формула для частичной суммы гармонического ряда:

, где  — числа Бернулли.

Данный ряд расходится, однако ошибка вычислений по нему никогда не превышает половины первого отброшенного члена.

Теоретико-числовые свойства частичных сумм[править | править код]

Расходимость ряда[править | править код]

при

Гармонический ряд расходится очень медленно (для того, чтобы частичная сумма превысила 100, необходимо около 1043 элементов ряда).

Расходимость гармонического ряда можно продемонстрировать, сравнив его со следующим телескопическим рядом (получается из логарифмирования ): ,

частичная сумма которого, очевидно, равна: . Последовательность таких частичных сумм расходится, следовательно, по определению телескопический ряд расходится, но тогда из признака сравнения рядов следует, что гармонический ряд тоже расходится.

Доказательство через предел последовательности частичных сумм[2][править | править код]

Рассмотрим последовательность , покажем, что эта последовательность не является фундаментальной, т.е., что . Оценим разность. Пусть . Тогда . Следовательно, данная последовательность не является фундаментальной и по критерию Коши расходится. Тогда по определению ряд также расходится.

Доказательство Орема[править | править код]

Доказательство расходимости можно построить, если сравнить гармонический ряд с другим расходящимся рядом, в котором знаменатели дополнены до степени двойки:

Это доказательство принадлежит средневековому учёному Николаю Орему (ок. 1350).

Частичные суммы[править | править код]

частичная сумма гармонического ряда:

называется гармоническим числом.

Разница между -м гармоническим числом и натуральным логарифмом сходится к постоянной Эйлера — Маскерони.

Разница между различными гармоническими числами никогда не равна целому числу и никакое гармоническое число, кроме , не является целым[3].

Связанные ряды[править | править код]

Обобщённый гармонический ряд[править | править код]

Обобщённым гармоническим рядом (частный случай ряда Дирихле) называют ряд[4]

.

Этот ряд расходится при и сходится при [4].

Сумма обобщённого гармонического ряда порядка равна значению дзета-функции Римана:

Для чётных это значение явно выражается через число пи — например, сумма ряда обратных квадратов . Но уже для α=3 его значение (константа Апери) аналитически неизвестно.

Другой иллюстрацией расходимости гармонического ряда может служить соотношение .

Знакопеременный ряд[править | править код]

Первые 14 частичных сумм знакочередующегося гармонического ряда (чёрные отрезки), показывающие сходимость к натуральному логарифму от 2 (красная линия).

В отличие от гармонического ряда, у которого все слагаемые берутся со знаком «+», ряд

сходится по признаку Лейбница. Поэтому говорят, что такой ряд обладает условной сходимостью. Его сумма равна натуральному логарифму 2:

Эта формула — частный случай ряда Меркатора (англ.), ряда Тейлора для натурального логарифма.

Похожий ряд может быть получен из ряда Тейлора для арктангенса:

Это соотношение известно как ряд Лейбница.

Случайный гармонический ряд[править | править код]

В 2003 году изучены[5][6] свойства случайного ряда

где независимые, одинаково распределённые случайные величины, которые принимают значения +1 и −1 с одинаковой вероятностью ½. Показано, что этот ряд сходится с вероятностью 1, и сумма ряда есть случайная величина с интересными свойствами. Например, функция плотности вероятности, вычисленная в точках +2 или −2 имеет значение:

0,124 999 999 999 999 999 999 999 999 999 999 999 999 999 7 642…,

отличаясь от ⅛ на менее чем 10−42.

«Истончённый» гармонический ряд[править | править код]

Ряд Кемпнера (англ.)

Если рассмотреть гармонический ряд, в котором оставлены только слагаемые, знаменатели которых не содержат цифры 9, то окажется, что оставшаяся сумма сходится к числу <80[7]. Более того, доказано, что если оставить слагаемые, не содержащие любой заранее выбранной последовательности цифр, то полученный ряд будет сходиться. Однако из этого будет ошибочно заключать о сходимости исходного гармонического ряда, так как с ростом разрядов в числе , все меньше слагаемых берется для суммы «истончённого» ряда. То есть в конечном счете отбрасывается подавляющее большинство членов образующих сумму гармонического ряда, чтобы не превзойти ограничивающую сверху геометрическую прогрессию.

Примечания[править | править код]

  1. Р. Грэхэм, Д. Кнут, О. Паташник Конкретная математика. Основание информатики — М.: Мир; БИНОМ. Лаборатория знаний, 2006. — стр. 47. — С. 703 ISBN 5-03-003773-X
  2. Кудрявцев Н. Л. Лекции по математическому анализу. — 2013. — С. 35.
  3. Harmonic Number — from Wolfram MathWorld
  4. 1 2 Справочник по математике для инженеров и учащихся втузов. Бронштейн И. Н., Семендяев К. А. М.: Наука. Главная редакция физико-математической литературы, 1981, 718 с.
  5. «Random Harmonic Series», American Mathematical Monthly 110, 407—416, May 2003
  6. Schmuland’s preprint of Random Harmonic Series
  7. Nick’s Mathematical Puzzles: Solution 72