Высотомер

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Трехстрелочный высотомер

Высотомер (или альтиметр от лат. altus высоко) — пилотажно-навигационный прибор, указывающий высоту полёта. По принципу устройства высотомеры делятся на барометрические и радиотехнические (иначе радиовысотомер).

Барометрический высотомер[править | править исходный текст]

Радиовысотомер РВ-5, однострелочный высотомер УВИД и двустрелочный ВД-10 на Ту-154М-100

Барометрический высотомер предназначен для определения барометрической высоты или относительной высоты полёта. Принцип действия барометрического высотомера основан на измерении давления атмосферы. Известно, что с увеличением высоты уменьшается и текущее атмосферное давление. Данный принцип положен в основу прибора, который на самом деле измеряет не высоту, а давление воздуха. Конструктивно прибор состоит из запаянной коробочки с мембраной, изменение положения которой механически связано со стрелками, перемещающимися вокруг шкалы, проградуированной в цифрах. На машинах со сравнительно низким практическим потолком (на Ан-2 и большинстве других поршневых самолётов, на вертолётах) установлен двустрелочный высотомер ВД-10 или аналогичный зарубежный, подобный обычным часам — только циферблат разделён не на 12, а на 10 секторов, каждый сектор для большой стрелки означает 100 м, а для маленькой — 1000 м.

Аналогичный по конструкции высотомер ВД-20 (высотомер двустрелочный на высоту до 20 км), установленный, например, на Ту-134, имеет отдельную градуировку циферблата для короткой стрелки до 20 км. Примечательно, что данная конструкция стала де-факто международным стандартом. Другие высотомеры, например, УВИД-15, имеют лишь длинную стрелку (один оборот за 1000 м или 1000 фт высоты), а полная высота отображается цифрами в окне. Точность измерения барометрических высотомеров (допустимая погрешность измерений) определяется действующими стандартами и лежит, как правило, в пределах до 10 м.

Высота полёта воздушного судна над земной (либо водной) поверхностью вычисляется по разности давления воздуха в точке нахождения судна и давления на поверхности, над которой оно находится. Атмосферное давление на поверхности (как правило, в районе аэродромов посадки, горных массивов либо крупных опасных препятствий) сообщается экипажу наземными службами. Для правильного отображения высоты полёта на приборе необходимо вручную установить величину атмосферного давления на земле (или давление, приведённое к уровню моря). Неправильная установка экипажем такого давления при полётах с нулевой видимостью не раз становилась причиной авиакатастроф.

Нужно отметить, что в авиации могут применяться несколько вариантов установки давления барометрического высотомера. В России и некоторых странах СНГ при полетах ниже эшелона перехода (ниже нижнего эшелона) принято устанавливать давление аэродрома (при заходе на посадку и вылете) или минимальное давление на маршруте, приведённое к уровню моря (при полетах по маршруту). В большинстве стран мира ниже нижнего эшелона отсчет высоты выполняют по давлению, приведенному к уровню моря.

Для полётов по воздушным трассам (выше высоты перехода) в авиации используется понятие эшелон, то есть условная высота, измеренная до изобары (условной линии постоянного давления) 760 мм рт. ст., она же 1013 мбар (гПа) или 29,92 дюйма рт. ст. Установка на всех воздушных линиях всеми без исключения воздушными судами одинакового давления на барометрических высотомерах создаёт единую для всех систему отсчёта, позволяющую осуществлять безопасное воздушное движение. Снижение воздушного судна на посадку без достоверной информации об атмосферном давлении в районе аэродрома категорически запрещается.

По требованиям ИКАО на всех воздушных судах устанавливается т. н. диспетчерский высотомер (например, типа УВИД), который, помимо показа высоты на шкале, выдаёт сигнал высоты самолётному ответчику, благодаря чему авиадиспетчер может видеть на экране точную высоту воздушного судна.

Парашютный высотомер — это обычный барометрический высотомер с удобным креплением на руку. Предназначен для измерения и визуального контроля высоты в свободном падении и при спуске на раскрытом парашюте, а также для определения атмосферного давления. Имеет малый размер и массу (площадь циферблата в среднем не больше 10х10 см, масса не более 700 г). Корпус выполняется из ударостойкого материала. Также на парашюте нередко устанавливается автомат высоты (по конструкции — тот же высотомер), автоматически раскрывающий парашют на заданной высоте, если этого не сделал парашютист.

Существуют также электронные высотомеры, они не только измеряют высоту, но и сигнализируют на заданных высотах.

Радиотехнический высотомер[править | править исходный текст]

Индикатор РВ-3 и табло «РВ-3 не пользоваться» на вертолёте Ми-2

Принцип действия РВ основан на измерении отрезка времени между посылкой и приёмом электромагнитных волн, отражённых от поверхности, до которой измеряется высота (земля либо вода). В отличие от барометрических высотомеров радиовысотомер измеряет истинную высоту полёта, поэтому не зависит от наличия информации о давлении воздуха, отличается также более высокой точностью. На практике радиовысотомеры используются на малых высотах, вблизи земной (либо водной) поверхности, потому как применение данной технологии с больших высот требует мощного источника излучений, а также аппаратуры, способной эффективно противостоять помехам.

Конструктивно прибор состоит из СВЧ радиопередатчика, направленная антенна которого расположена «на брюхе» воздушного судна, приёмника отражённого сигнала, устройств обработки сигналов, а также индикатора на приборной доске экипажа, на который передаются данные о текущей высоте. Радиовысотомеры делятся на РВ малых высот (например, отечественные РВ-3, РВ-5), которые предназначены для определения высот до 1500 метров и, как правило, работают в режиме непрерывной радиолокации, и высотомеры больших высот (более 1500 м, наподобие РВ-18, измеряющего высоты до 30 км), обычно работающие в импульсном режиме. Практически у всех РВ имеется сигнализатор малой высоты, подающий световой и звуковой сигнал при понижении высоты ниже заданной, установленной лётчиком.

К недостаткам прибора можно отнести выраженную направленность измерений (направление луча передатчика, направленного перпендикулярно вниз). По этой причине применение радиовысотомеров эффективно только в равнинной местности и практически бесполезно в горных и сильно пересечённых районах. В крене РВ показывает завышенную высоту, так как высота — вертикальный катет треугольника, а луч радиовысотомера в крене направлен по гипотенузе, поэтому при значительных кренах (более 15-20 градусов) может включаться предупреждающая световая сигнализация. Тангаж обычно не учитывается, так как у транспортных летательных аппаратов он редко превышает упомянутые 15-20°. Кроме того, вызывает вопросы экологичность радиоизмерений, так как для обеспечения требуемой точности необходимо применять коротковолновые мощные передатчики, несущие явную опасность[1] для биосферы.

GPS[править | править исходный текст]

Для определения высоты могут использоваться также GPS-приёмники. Принцип действия основан на одновременном измерении расстояния до нескольких (как правило — от четырёх до шести) вещающих спутников, находящихся на известных и специально корректируемых орбитах. На основании математических вычислений прибор определяет точку в пространстве — координаты φ, λ — широту и долготу места на модели поверхности Земли, а также высоту Н относительно среднего уровня моря модели (наиболее распространённая модель поверхности земли WGS84). Минимальное число спутников, необходимое для расчёта высоты, равно трём. Только координат - двум. Для определения времени достаточно сигнала одного спутника. Большее число спутников позволяет увеличивать точность вычисления параметров. С точки зрения истинности отображения координат имеет преимущество как перед барометрическими, так и перед радиотехническими высотомерами, так как не зависит ни от атмосферного давления, ни от измерения расстояния до физического рельефа местности.

Тем не менее, надо помнить, что на скоростях спуска сильно проявляется доплеровский эффект, да и на вычисление параметров приёмнику нужно некоторое время (до секунды), что приводит к отставанию вычисленной координаты от реальной. Специальные парашютные высотомеры ведущих фирм имеют коррекцию на скорость, однако, т.к. скорость вычисляется по тем же сигналам, точность GPS приборов в условиях прыжка всё равно остаётся довольно низкой. Например, в автомобилях со встроенной системой GPS, приёмник получает сигнал от автомобильного датчика скорости и использует его для коррекции своих показаний. Их достоинство - низкая цена и вес. Использование для Base Jumping-a и прочих маловысотных прыжков не рекомендуется. Кроме того, из-за отражений GPS сигнала от скал или опор показания GPS высотомера могут стать вовсе непредсказуемыми. Для Base Jumping-а рекомендуются барометрические высотомеры, механические или электронные.

Точность измерений при необходимости может достигать порядка нескольких сантиметров, при использовании закрытого военного канала L1, лицензию на который выдаёт министерство обороны США (не бесплатно и не всем), с применением дорогостоящего оборудования (приёмники TOPCON), и по этой причине в быту не применяются.[источник не указан 928 дней] Точность измерения бытовых приборов GPS в статике (отсутствии движения) — порядка 10 метров, что вполне достаточно для большинства задач ориентирования.[источник не указан 928 дней]

Гамма-лучевой высотомер[править | править исходный текст]

В конструкции высотомера используется источник гамма-излучения (обычно — изотопы 60Со, 137Сs). Приёмник фиксирует обратное фотонное излучение, отражённое от объектов подстилающей поверхности. ГЛВ обладают высокой точностью, устойчивы к воздействию различного рода помех, влияющих на точность измерений. Гамма-лучевые высотомеры используются на малых высотах (метры, десятки метров от поверхности). Основное применение — системы мягкой посадки космических кораблей. В частности, в КК «Союз» гамма-лучевой высотомер (шифр изделия «Кактус») установлен у днища спускаемого аппарата, и место его установки маркировано знаком радиационной опасности.

Заключение[править | править исходный текст]

Измерение высоты полёта воздушного судна — чрезвычайно важная и ответственная задача, связанная с обеспечением безопасности полётов. При этом подход к исполнению данной задачи должен быть комплексным, применяющим все известные способы определения истинного положения воздушного судна в пространстве. По этой причине на современных воздушных судах применяются все вышеперечисленные приборы, а экипажи проходят профессиональную подготовку для их грамотного совместного использования. Отказ хотя бы одного прибора, измеряющего высоту полёта, в авиации считается особым случаем и расценивается соответствующими службами как предпосылка к лётному происшествию.

Примечания[править | править исходный текст]

См. также[править | править исходный текст]

Литература[править | править исходный текст]

  • Оборудование самолётов. Волкоедов А. П., Паленый Э. Г., М., Машиностроение, 1980 г.
  • Радиооборудование самолётов Ту-134 и Ту-134А и его лётная эксплуатация. Кучумова И. П., М., Машиностроение, 1978 г.

Ссылки[править | править исходный текст]