Векторный анализ

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Ве́кторный ана́лиз — раздел математики, распространяющий методы математического анализа на векторы, как правило в двух- или трёхмерном пространстве.

Сфера применения[править | править код]

Объектами приложения векторного анализа являются:

Наибольшее применение векторный анализ находит в физике и инженерии. Основные преимущества векторных методов перед традиционными координатными:

  1. Компактность. Одно векторное уравнение объединяет несколько координатных, и его исследование чаще всего можно проводить непосредственно, не заменяя векторы на их координатную запись.
  2. Инвариантность. Векторное уравнение не зависит от системы координат и без труда переводится в координатную запись в любой удобной системе координат.
  3. Наглядность. Дифференциальные операторы векторного анализа и связывающие их соотношения обычно имеют простое и наглядное физическое истолкование.

Векторные операторы[править | править код]

Наиболее часто применяемые векторные операторы:

Оператор Обозначение Описание Тип
Градиент Определяет направление и скорость скорейшего возрастания скалярного поля. Скаляр вектор
Дивергенция Характеризует расходимость, источники и стоки векторного поля. Вектор скаляр
Ротор Характеризует вихревую составляющую векторного поля. Вектор вектор
Лапласиан Сочетание дивергенции с градиентом. Скаляр скаляр
Лапласиан векторный [1] Вектор вектор

Дифференциальные операции второго порядка[править | править код]

Скалярное поле Векторное поле

Указанные операции называются дифференциальными операциями второго порядка по той причине, что они сводятся к двукратному дифференцированию скалярных или векторных функций (формально: в их символической записи оператор Гамильтона встречается два раза).[2]

Основные соотношения[править | править код]

Приведём сводку практически важных теорем многомерного анализа в векторной записи.

Теорема Запись Пояснения
Теорема о градиенте Криволинейный интеграл от градиента скалярного поля равен разности значений поля в граничных точках кривой.
Теорема Грина Криволинейный интеграл по замкнутому плоскому контуру может быть преобразован в двойной интеграл по области, ограниченной контуром.
Теорема Стокса Поверхностный интеграл от ротора векторного поля равен циркуляции по границе этой поверхности.
Теорема Остроградского — Гаусса Объёмный интеграл от дивергенции векторного поля равен потоку этого поля через граничную поверхность.

Исторический очерк[править | править код]

Первым векторы ввёл У. Гамильтон в связи с открытием в 1843 г. кватернионов (как их трёхмерную мнимую часть). В двух монографиях (1853, 1866 посмертно) Гамильтон ввёл понятие вектора и вектор-функции, описал дифференциальный оператор набла», 1846) и многие другие понятия векторного анализа. Он определил в качестве операций над новыми объектами скалярное и векторное произведения, которые для кватернионов получались чисто алгебраически (при обычном их умножении). Гамильтон ввёл также понятия коллинеарности и компланарности векторов, ориентации векторной тройки и др.

Компактность и инвариантность векторной символики, использованной в первых трудах Максвелла (1873), заинтересовали физиков; вскоре вышли «Элементы векторного анализа» Гиббса (1880-е годы), а затем Хевисайд (1903) придал векторному исчислению современный вид. Примечательно, что уже в работах Максвелла кватернионная терминология почти отсутствует, фактически заменённая на чисто векторную. Термин «векторный анализ» предложил Гиббс (1879) в своём курсе лекций.

См. также[править | править код]

Литература[править | править код]

Примечания[править | править код]

  1. В.Г.Воднев, А.Ф.Наумович, Н.Ф.Наумович "Математический словарь высшей школы". Издательство МПИ 1984. Статья "Оператор Лапласа" и "Ротор векторного поля".
  2. В.Г.Воднев, А.Ф.Наумович, Н.Ф.Наумович "Математический словарь высшей школы". Издательство МПИ 1984. Статья "Дифференциальные операции второго порядка".

Ссылки[править | править код]