Электрическая проводимость

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
 ⛭  Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм
См. также: Портал:Физика

Электри́ческая проводи́мость (электропроводность, проводимость) — способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению[1]. В Международной системе единиц (СИ) единицей измерения электрической проводимости является сименс (русское обозначение: См; международное: S), определяемый как 1 См = 1 Ом-1, то есть, как электрическая проводимость участка электрической цепи сопротивлением 1 Ом[2].

Удельная проводимость[править | править вики-текст]

Удельной проводимостью (удельной электропроводностью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

где

В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.

Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:

при этом векторы плотности тока и напряжённости поля в общем случае не коллинеарны.

Для любой линейной среды можно выбрать локально (а если среда однородная, то и глобально) т. н. собственный базис — ортогональную систему декартовых координат, в которых матрица становится диагональной, то есть приобретает вид, при котором из девяти компонент отличными от нуля являются лишь три: , и . В этом случае, обозначив как , вместо предыдущей формулы получаем более простую

Величины называют главными значениями тензора удельной проводимости. В общем случае приведённое соотношение выполняется только в одной системе координат[3].

Величина, обратная удельной проводимости, называется удельным сопротивлением.

Вообще говоря, линейное соотношение, написанное выше (как скалярное, так и тензорное), верно в лучшем случае[4] приближённо, причём приближение это хорошо только для сравнительно малых величин E. Впрочем, и при таких величинах E, когда отклонения от линейности заметны, удельная электропроводность может сохранять свою роль в качестве коэффициента при линейном члене разложения, тогда как другие, старшие, члены разложения дадут поправки, обеспечивающие хорошую точность. В случае нелинейной зависимости J от E вводится дифференциальная удельная электропроводность (для анизотропных сред: ).

Электрическая проводимость G проводника длиной L с площадью поперечного сечения S может быть выражена через удельную проводимость вещества, из которого сделан проводник, следующей формулой:

В системе СИ удельная электропроводность измеряется в сименсах на метр (См/м) или в Ом−1·м−1. В СГСЭ единицей удельной электропроводности является обратная секунда (с−1).

Связь с коэффициентом теплопроводности[править | править вики-текст]

Закон Видемана — Франца, выполняющийся для металлов при высоких температурах, устанавливает однозначную связь удельной электрической проводимости с коэффициентом теплопроводности K:

где k — постоянная Больцмана, e — элементарный заряд. Эта связь основана на том факте, что как электропроводность, так и теплопроводность в металлах обусловлены движением свободных электронов проводимости.

Электропроводность металлов[править | править вики-текст]

Ещё до открытия электронов было обнаружено, что протекание тока в металлах, в отличие от тока в жидких электролитах, не обусловлено переносом вещества металла. Эксперимент, который выполнил немецкий физик Карл Виктор Эдуард Рикке (Riecke Carl Viktor Eduard) в 1901 году, состоял в том, что через контакты различных металлов, — двух медных и одного алюминиевого цилиндра с тщательно отшлифованными торцами, поставленными один на другой, в течение года пропускался постоянный электрический ток. Затем исследовался состав материала вблизи контактов. Оказалось, что переноса вещества металла через границу не происходит и вещество по разные стороны границы раздела имеет тот же состав, что и до пропускания тока. Таким образом было показано, что перенос электрического тока осуществляется не атомами и молекулами металлов. Однако эти опыты не дали ответа на вопрос о природе носителей заряда в металлах[5].

Удельная проводимость некоторых веществ[править | править вики-текст]

Удельная проводимость приведена при температуре +20 °C[6]:

вещество См
серебро 62 500 000
медь 59 500 000[7]
золото 45 500 000
алюминий 38 000 000[8]
магний 22 700 000
иридий 21 100 000
молибден 18 500 000
вольфрам 18 200 000
цинк 16 900 000
никель 11 500 000
железо чистое 10 000 000
платина 9 350 000
олово 8 330 000
сталь литая 7 690 000
свинец 4 810 000
нейзильбер 3 030 000
константан 2 000 000
манганин 2 330 000
ртуть 1 040 000
нихром 893 000
графит 125 000
вода морская 3
земля влажная 10−2
вода дистилл. 10−4
мрамор 10−8
стекло 10−11
фарфор 10−14
кварцевое стекло 10−16
янтарь 10−18

Электропроводность растворов[править | править вики-текст]

Скорость движения ионов зависит от напряженности электрического поля, температуры, вязкости раствора, радиуса и заряда иона и межионного взаимодействия.

У растворов сильных электролитов наблюдается характер концентрационной зависимости электрической проводимости объясняется действием двух взаимнопротивоположных эффектов. С одной стороны, с ростом разбавления уменьшается число ионов в единице объёма раствора. С другой стороны, возрастает их скорость за счет ослабления торможения ионами противоположного знака.

Для растворов слабых электролитов наблюдается характер концентрационной зависимости электрической проводимости можно объяснить тем, что рост разбавления ведёт, с одной стороны, к уменьшению концентрации молекул электролита. В то же время возрастает число ионов за счёт роста степени ионизации.

В отличие от металлов (проводники 1-го рода) электрическая проводимость растворов как слабых, так и сильных электролитов (проводники 2-го рода) при повышении температуры возрастает. Этот факт можно объяснить увеличением подвижности в результате понижения вязкости раствора и ослаблением межионного взаимодействия

Электрофоретический эффект — возникновение торможения носителей вследствие того, что ионы противоположного знака под действием электрического поля двигаются в направлении, обратном направлению движения рассматриваемого иона

Релаксационый эффект — торможение носителей в связи с тем, что ионы при движении расположены асимметрично по отношению к их ионным атмосферам. Накопление зарядов противоположного знака в пространстве за ионом приводит к торможению его движения.

При больших напряжениях электрического поля скорость движения ионов настолько велика, что ионная атмосфера не успевает образоваться. В результате электрофоретическое и релаксационное торможение не проявляется.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Электропроводность (физич.) — статья из Большой советской энциклопедии
  2. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 105. — 240 с. — ISBN 5-7050-0118-5.
  3. В случае совпадения двух из трех собственных чисел , есть произвол в выборе такой системы координат (собственных осей тензора ), а именно довольно очевидно, что можно произвольно повернуть её относительно оси с отличающимся собственным числом, и выражение не изменится. Однако это не слишком меняет картину. В случае же совпадения всех трех собственных чисел мы имеем дело с изотропной проводимостью, и, как легко видеть, умножение на такой тензор сводится к умножению на скаляр.
  4. Для многих сред линейное приближение является достаточно хорошим или даже очень хорошим для достаточно широкого диапазона величин электрического поля, однако существуют среды, для которых это совсем не так уже при весьма малых E.
  5. Элементарный учебник физики / Под ред. Г. С. Ландсберга. — М.: Наука, 1985. — Т. II. Электричество и магнетизм. — С. 194. — 479 с.
  6. Кухлинг Х. Справочник по физике. Пер. с нем., М.: Мир, 1982, стр. 475 (табл. 39); значения удельной проводимости вычислены из удельного сопротивления и округлены до 3 значащих цифр.
  7. В.Г.Герасимов, П.Г.Грудинский, Л.А.Жуков. Электротехнический справочник. В 3-х томах. Т.1 Общие вопросы. Электротехнические материалы / Под общей редакцией профессоров МЭИ. — 6-е изд.. — Москва: Энергия, 1980. — С. 353. — 520 с. — ISBN ББК 31.2.
  8. В.Г.Герасимов, П.Г.Грудинский, Л.А.Жуков. Электротехнический справочник. В 3-х томах. Т.1 Общие вопросы. Электротехнические материалы. / под общей редакцией профессоров МЭИ. — 6-е издание. — Москва: Энергия, 1980. — С. 364. — 520 с. — ISBN ББК 31.2.

Литература[править | править вики-текст]

  • А. Н. Матвеев. Электричество и магнетизм. (Первое изд. М.: Высшая школа, 1983. 463с.)
  • Ершов, Попков, Берлянд и др. Общая химия. Биофизическая химия. Химия биогенных элементов. — Изд. 8-е, стериотипное. — Москва: Высшая школа, 2010. — 559 с. — ISBN 978-5-06-006180-2.