Кремний: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
м →Нахождение в природе: пунктуация |
|||
Строка 209: | Строка 209: | ||
[[Диоксид кремния]] в [[нормальные условия|нормальных условиях]] всегда является твёрдым биоинертным, неразлагаемым веществом, склонным к образованию пыли, состоящей из частиц с острыми режущими кромками. Вредное действие диоксида кремния и большинства силицидов и силикатов основано на раздражающем и фиброгенном действии, на накоплении вещества в ткани лёгких, вызывающем тяжёлую болезнь — [[силикоз]]. Для защиты органов дыхания от пылевых частиц используются противопылевые респираторы. Тем не менее, даже при использовании средств индивидуальной защиты носоглотка, горло у людей, систематически работающих в условиях запыленности соединениями кремния и особенно монооксидом кремния, имеют признаки воспалительных процессов на слизистых оболочках. |
[[Диоксид кремния]] в [[нормальные условия|нормальных условиях]] всегда является твёрдым биоинертным, неразлагаемым веществом, склонным к образованию пыли, состоящей из частиц с острыми режущими кромками. Вредное действие диоксида кремния и большинства силицидов и силикатов основано на раздражающем и фиброгенном действии, на накоплении вещества в ткани лёгких, вызывающем тяжёлую болезнь — [[силикоз]]. Для защиты органов дыхания от пылевых частиц используются противопылевые респираторы. Тем не менее, даже при использовании средств индивидуальной защиты носоглотка, горло у людей, систематически работающих в условиях запыленности соединениями кремния и особенно монооксидом кремния, имеют признаки воспалительных процессов на слизистых оболочках. |
||
=== В организме человека === |
|||
Доказано, что кремний имеет важное значение для здоровья человека, в частности, для ногтей, волос, костей и кожи<ref>{{cite book|first1= Keith R.|last1= Martin|editor=Astrid Sigel|editor2=Helmut Sigel|editor3=Roland K.O. Sigel|title=Interrelations between Essential Metal Ions and Human Diseases|series=Metal Ions in Life Sciences|volume=13|date=2013|publisher=Springer|pages=451–473|chapter=Chapter 14. Silicon: The Health Benefits of a Metalloid|doi=10.1007/978-94-007-7500-8_14|pmid= 24470100|isbn= 978-94-007-7499-5}}</ref>. Исследования показывают, что женщины в пременопаузе с более высоким потреблением биодоступного кремния имеют более высокую плотность костной ткани, а также, что добавки кремния может увеличить объем и плотность кости у пациентов с остеопорозом<ref name="jugdaohsingh2007silicon">{{cite journal |last1=Jugdaohsingh |first1=R. |title=Silicon and bone health |journal=The Journal of Nutrition, Health and Aging |date=Mar–Apr 2007 |volume=11 |issue=2 |pages=99–110 |pmc=2658806 |pmid=17435952}}</ref>. |
|||
== Комментарии == |
== Комментарии == |
Версия от 19:22, 13 января 2019
Кремний | ||||
---|---|---|---|---|
← Алюминий | Фосфор → | ||||
| ||||
Внешний вид простого вещества | ||||
в аморфной форме — коричневый порошок, в кристаллической — тёмно-серый, слегка блестящий |
||||
Свойства атома | ||||
Название, символ, номер | Кремний/Silicium (Si), 14 | |||
Атомная масса (молярная масса) |
[28,086][комм 1][1] а. е. м. (г/моль) | |||
Электронная конфигурация | [Ne] 3s2 3p2; в соед. [Ne] 3s 3p3 (гибридизация) | |||
Радиус атома | 132 пм | |||
Химические свойства | ||||
Ковалентный радиус | 111 пм | |||
Радиус иона | 42 (+4e), 271 (−4e) пм | |||
Электроотрицательность | 1,90 (шкала Полинга) | |||
Электродный потенциал | 0 | |||
Степени окисления | −4, 0, +2; +4 | |||
Энергия ионизации (первый электрон) |
786,0 (8,15) кДж/моль (эВ) | |||
Термодинамические свойства простого вещества | ||||
Плотность (при н. у.) | 2,33 г/см³ | |||
Температура плавления | 1414,85 °C (1688 K) | |||
Температура кипения | 2349,85 °C (2623 K) | |||
Мол. теплота плавления | 50,6 кДж/моль | |||
Мол. теплота испарения | 383 кДж/моль | |||
Молярная теплоёмкость | 20,16[2] Дж/(K·моль) | |||
Молярный объём | 12,1 см³/моль | |||
Кристаллическая решётка простого вещества | ||||
Структура решётки | кубическая, алмазная | |||
Параметры решётки | 5,4307 Å | |||
Температура Дебая | 645 ± 5[3] K | |||
Прочие характеристики | ||||
Теплопроводность | (300 K) 149 Вт/(м·К) | |||
Номер CAS | 7440-21-3 | |||
Эмиссионный спектр | ||||
14 | Кремний
|
3s23p2 |
Кре́мний (Si от лат. Silicium) — элемент четырнадцатой группы (по старой классификации — главной подгруппы четвёртой группы), третьего периода периодической системы химических элементов с атомным номером 14. Атомная масса 28,085. Неметалл, второй по распространённости химический элемент в земной коре (после кислорода). Исключительно важен для современной электроники.
История
Впервые в чистом виде кремний был выделен в 1811 году французскими учёными Жозефом Луи Гей-Люссаком и Луи Жаком Тенаром.
Происхождение названия
В 1825 году шведский химик Йёнс Якоб Берцелиус действием металлического калия на фтористый кремний SiF4 получил чистый элементарный кремний. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название «кремний» введено в 1834 году российским химиком Германом Ивановичем Гессом. В переводе c др.-греч. κρημνός — «утёс, гора».
Нахождение в природе
Содержание кремния в земной коре составляет по разным данным 27,6—29,5 % по массе. Таким образом, по распространённости в земной коре кремний занимает второе место после кислорода. Концентрация в морской воде 3 мг/л[4].
Чаще всего в природе кремний встречается в виде кремнезёма — соединений на основе диоксида кремния (IV) SiO2 (около 12 % массы земной коры). Основные минералы и горные породы, образуемые диоксидом кремния, — это песок (речной и кварцевый), кварц и кварциты, кремень, полевые шпаты. Вторую по распространённости в природе группу соединений кремния составляют силикаты и алюмосиликаты.
Отмечены единичные факты нахождения чистого кремния в самородном виде[5].
Изотопы и их применение
Кремний состоит из стабильных изотопов 28Si (92,23 %), 29Si (4,67 %) и 30Si (3,10 %). Остальные изотопы являются радиоактивными.
Ядро 29Si (как и протон) имеет ядерный спин I = 1/2 и все шире используется в спектроскопии ЯМР. 31Si, образующийся при действии нейтронов на 30Si, имеет период полураспада равный 2,62 ч. Его можно определить по характеристическому β-излучению, и он очень удобен для количественного определения кремния методом нейтронно-активационного анализа. Радиоактивный нуклид 32Si имеет самый большой период полураспада (~170 лет) и является мягким (низкоэнергетическим) β-излучателем.[6]
Получение
Свободный кремний получается при прокаливании мелкого белого песка (диоксида кремния) с магнием:
При этом образуется аморфный кремний, имеющий вид бурого порошка[7].
В промышленности кремний технической чистоты получают, восстанавливая расплав SiO2 коксом при температуре около 1800 °C в рудотермических печах шахтного типа. Чистота полученного таким образом кремния может достигать 99,9 % (основные примеси — углерод, металлы).
Возможна дальнейшая очистка кремния от примесей.
- Очистка в лабораторных условиях может быть проведена путём предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают газообразный моносилан SiH4. Моносилан очищают ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C.
- Очистка кремния в промышленных масштабах осуществляется путём непосредственного хлорирования кремния. При этом образуются соединения состава SiCl4, SiHCl3 и SiH2Cl2. Их различными способами очищают от примесей (как правило, перегонкой и диспропорционированием) и на заключительном этапе восстанавливают чистым водородом при температурах от 900 до 1100 °C.
- Разрабатываются более дешёвые, чистые и эффективные промышленные технологии очистки кремния. На 2010 г. к таковым можно отнести технологии очистки кремния с использованием фтора (вместо хлора); технологии, предусматривающие дистилляцию монооксида кремния; технологии, основанные на вытравливании примесей, концентрирующихся на межкристаллитных границах.
Содержание примесей в доочищенном кремнии может быть снижено до 10−8—10−6 % по массе. Более подробно вопросы получения сверхчистого кремния рассмотрены в статье Поликристаллический кремний.
Способ получения кремния в чистом виде разработан Николаем Николаевичем Бекетовым.
В России технический кремний производится «ОК Русал» на заводах в г. Каменск-Уральский (Свердловская область) и г. Шелехов (Иркутская область); доочищенный по хлоридной технологии кремний производит группа «Nitol Solar» на заводе в г. Усолье-Сибирское.
Физические свойства
Кристаллическая решётка кремния кубическая гранецентрированная типа алмаза, параметр а = 0,54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твёрдость кремния значительно меньше, чем алмаза. Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Он прозрачен для инфракрасного излучения начиная с длины волны 1,1 мкм. Собственная концентрация носителей заряда — 5,81⋅1015 м−3 (для температуры 300 K).
Электрофизические свойства
Элементарный кремний в монокристаллической форме является непрямозонным полупроводником. Ширина запрещённой зоны при комнатной температуре составляет 1,12 эВ, а при Т = 0 К — 1,21 эВ[9]. Концентрация собственных носителей заряда в кремнии при нормальных условиях составляет около 1,5⋅1010 см−3[10].
На электрофизические свойства кристаллического кремния большое влияние оказывают содержащиеся в нём примеси. Для получения кристаллов кремния с дырочной проводимостью в кремний вводят атомы элементов III группы, таких, как бор, алюминий, галлий, индий. Для получения кристаллов кремния с электронной проводимостью в кремний вводят атомы элементов V группы, таких, как фосфор, мышьяк, сурьма.
При создании электронных приборов на основе кремния используется преимущественно приповерхностный слой монокристалла (толщиной до десятков мкм), поэтому качество поверхности кристалла может оказывать существенное влияние на электрофизические свойства кремния и, соответственно, на свойства созданного электронного прибора. При создании некоторых приборов используется технология модифицирующая поверхность монокристалла, например, обработка поверхности кремния различными химическими реагентами и её облучение.
- Диэлектрическая проницаемость: 12[2]
- Подвижность электронов: 1200—1450 см²/(В·c).
- Подвижность дырок: 500 см²/(В·c).
- Ширина запрещённой зоны 1,21 эВ при 0 К.
- Время жизни свободных электронов: 5 нс — 10 мс
- Длина свободного пробега электронов: порядка 1 мм.
- Длина свободного пробега дырок: порядка 0,2—0,6 мм.
Все значения приведены для нормальных условий.
Химические свойства
Гибридизация
Подобно атомам углерода, для атомов кремния является характерным состояние sp3-гибридизации орбиталей. В связи с гибридизацией чистый кристаллический кремний образует алмазоподобную решётку, в которой кремний четырёхвалентен. В соединениях кремний обычно также проявляет себя как четырёхвалентный элемент со степенью окисления +4 или −4. Встречаются двухвалентные соединения кремния, например, оксид кремния (II) — SiO.
Малая активность кремния
При нормальных условиях кремний химически малоактивен и активно реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF4.
Такая «неактивность» кремния связана с пассивацией поверхности наноразмерным слоем диоксида кремния, немедленно образующегося в присутствии кислорода, воздуха или воды (водяных паров).
Реакция с галогенами
При нагревании до температуры свыше 400—500 °C кремний реагирует с хлором,бромом и иодом — с образованием соответствующих легко летучих тетрагалогенидов SiHal4 и, возможно, галогенидов более сложного состава.
Реакция с кислородом
При нагревании до температуры свыше 400—500 °C кремний реагирует с кислородом с образованием диоксида SiO2.
Процесс сопровождается увеличением толщины слоя диоксида на поверхности, скорость процесса окисления лимитируется диффузией атомарного кислорода сквозь плёнку диоксида.
Получение монооксида кремния
При восстановлении SiO2 кремнием при температурах свыше 1200 °C образуется оксид кремния (II) — SiO.
Этот процесс постоянно наблюдается при производстве кристаллов кремния методами Чохральского, направленной кристаллизации, потому что в них используются контейнеры из диоксида кремния, как наименее загрязняющего кремний материала.
Получение силанов
С водородом кремний непосредственно не реагирует. Cоединения кремния с водородом — силаны с общей формулой SinH2n+2 — получают косвенным путём. Моносилан SiH4 (его часто называют просто силаном) выделяется при взаимодействии силицидов металлов с растворами кислот, например:
Образующийся в этой реакции силан SiH4 содержит примесь и других силанов, в частности, дисилана Si2H6 и трисилана Si3H8, в которых имеется цепочка из атомов кремния, связанных между собой одинарными связями (—Si—Si—Si—).
Реакция с азотом и бором
С азотом и бором кремний реагирует при температуре около 1000 °C, образуя соответственно нитрид Si3N4 и термически и химически стойкие бориды SiB3, SiB6 и SiB12.
Получение карборунда
При температурах свыше 1000 °C можно получить соединение кремния и его ближайшего аналога по таблице Менделеева — углерода — карбид кремния SiC (карборунд), который характеризуется высокой твёрдостью и низкой химической активностью.
Карборунд широко используется как абразивный материал. При этом, что интересно, расплав кремния (1415 °C) может длительное время контактировать с углеродом в виде крупных кусков плотноспечённого мелкозернистого графита изостатического прессования, практически не растворяя и никак не взаимодействуя с последним.
Кремний растворяет многие металлы
Нижележащие элементы 4-й группы (Ge, Sn, Pb) неограниченно растворимы в кремнии, как и большинство других металлов.
Силициды
При нагревании кремния с металлами могут образовываться их соединения — силициды.
Силициды можно подразделить на две группы: ионно-ковалентные (силициды щелочных, щелочноземельных металлов и магния типа Ca2Si, Mg2Si и др.) и металлоподобные (силициды переходных металлов). Силициды активных металлов разлагаются под действием кислот, силициды переходных металлов химически стойки и под действием кислот не разлагаются. Металлоподобные силициды имеют высокие температуры плавления (до 2000 °C). Наиболее часто образуются металлоподобные силициды составов MeSi, Me3Si2, Me2Si3, Me5Si3 и MeSi2. Металлоподобные силициды химически инертны, устойчивы к действию кислорода даже при высоких температурах.
Особо следует отметить, что с железом кремний образует эвтектическую смесь, что позволяет спекать (сплавлять) эти материалы для образования ферросилициевой керамики при температурах, заметно меньших, чем температуры плавления железа и кремния.
Некоторые кремнийорганические соединения
Для кремния характерно образование кремнийорганических соединений, в которых атомы кремния соединены в длинные цепочки за счет мостиковых атомов кислорода —О—, а к каждому атому кремния, кроме двух атомов О, присоединены ещё два органических радикала R1 и R2 = CH3, C2H5, C6H5, CH2CH2CF3 и др.
Травление кислотами
Для травления кремния наиболее широко используют смесь плавиковой и азотной кислот. Некоторые специальные травители предусматривают добавку хромового ангидрида и иных веществ. При травлении кислотный травильный раствор быстро разогревается до температуры кипения, при этом скорость травления многократно возрастает.
Травление щелочами
Для травления кремния могут использоваться водные растворы щёлочей. Травление кремния в щелочных растворах начинается при температуре раствора более 60 °C.
Применение
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
Технический кремний находит следующие применения:
- сырьё для металлургических производств: компонент сплава (бронзы, силумин); раскислитель (при выплавке чугуна и сталей); модификатор свойств металлов или легирующий элемент (например, добавка определённого количества кремния при производстве трансформаторных сталей уменьшает коэрцитивную силу готового продукта) и т. п.;
- сырьё для производства более чистого поликристаллического кремния и очищенного металлургического кремния (в литературе «umg-Si»);
- сырьё для производства кремнийорганических материалов, силанов;
- иногда кремний технической чистоты и его сплав с железом (ферросилиций) используется для производства водорода в полевых условиях;
- для производства солнечных батарей;
- антиблок (антиадгезивная добавка) в промышленности пластмасс.
Сверхчистый кремний преимущественно используется для производства одиночных электронных приборов (нелинейные пассивные элементы электрических схем) и однокристальных микросхем. Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде кристаллического кремния являются основным сырьевым материалом для солнечной энергетики.
Монокристаллический кремний — помимо электроники и солнечной энергетики, используется для изготовления зеркал газовых лазеров.
Соединения металлов с кремнием — силициды — являются широко употребляемыми в промышленности (например, электронной и атомной) материалами с широким спектром полезных химических, электрических и ядерных свойств (устойчивость к окислению, нейтронам и др.). Силициды ряда элементов являются важными термоэлектрическими материалами.
Соединения кремния служат основой для производства стекла и цемента. Производством стекла и цемента занимается силикатная промышленность. Она также выпускает силикатную керамику — кирпич, фарфор, фаянс и изделия из них.
Широко известен силикатный клей, применяемый в строительстве как сиккатив, а в пиротехнике и в быту для склеивания бумаги.
Получили широкое распространение силиконовые масла и силиконы — материалы на основе кремнийорганических соединений.
Биологическая роль
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
Для некоторых организмов кремний является важным биогенным элементом. Он входит в состав опорных образований у растений и скелетных — у животных. В больших количествах кремний концентрируют морские организмы — диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь — подсемейства Бамбуков и Рисовидных, в том числе — рис посевной. Мышечная ткань человека содержит (1—2)⋅10−2 % кремния, костная ткань — 17⋅10−4 %, кровь — 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.
Нормы предельно допустимых концентраций по кремнию привязаны к содержанию пыли диоксида кремния в воздухе. Это связано с особенностями химии кремния:
- Чистый кремний, равно как карбид кремния, в контакте с водой или кислородом воздуха образует на поверхности непроницаемую пленку диоксида кремния (SiO2), которая пассивирует поверхность;
- Многие кремнийорганические соединения в контакте с кислородом воздуха и водяными парами окисляются или гидролизуются с образованием в конечном итоге диоксида кремния;
- Монооксид кремния (SiO) на воздухе способен (иногда со взрывом) доокисляться до высокодисперсного диоксида кремния.
Диоксид кремния в нормальных условиях всегда является твёрдым биоинертным, неразлагаемым веществом, склонным к образованию пыли, состоящей из частиц с острыми режущими кромками. Вредное действие диоксида кремния и большинства силицидов и силикатов основано на раздражающем и фиброгенном действии, на накоплении вещества в ткани лёгких, вызывающем тяжёлую болезнь — силикоз. Для защиты органов дыхания от пылевых частиц используются противопылевые респираторы. Тем не менее, даже при использовании средств индивидуальной защиты носоглотка, горло у людей, систематически работающих в условиях запыленности соединениями кремния и особенно монооксидом кремния, имеют признаки воспалительных процессов на слизистых оболочках.
В организме человека
Доказано, что кремний имеет важное значение для здоровья человека, в частности, для ногтей, волос, костей и кожи[11]. Исследования показывают, что женщины в пременопаузе с более высоким потреблением биодоступного кремния имеют более высокую плотность костной ткани, а также, что добавки кремния может увеличить объем и плотность кости у пациентов с остеопорозом[12].
Комментарии
- ↑ Указан диапазон значений атомной массы в связи с неоднородностью распространения изотопов в природе.
Примечания
- ↑ Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047—1078. — doi:10.1351/PAC-REP-13-03-02.
- ↑ 1 2 Химическая энциклопедия: в 5 т. / гл. ред. Кнунянц И. Л.. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 508. — 671 с. — 100'000 экз.
- ↑ При температуре 0 — К. Баранский П. И., Клочков В. П., Потыкевич И. В. Полупроводниковая электроника. Справочник. — Киев: «Наукова думка», 1975. — 704 с. ил.
- ↑ J. P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965.
- ↑ Металлический кремний в ийолитах Горячегорского массива. Архивная копия от 17 июня 2013 на Wayback Machine, Петрология обыкновенных хондритов.
- ↑ Гринвуд Н. Н. Химия элементов. — 3-е изд. — 2015. — С. 312. — 607 с.
- ↑ Глинка Н. Л. Общая химия. — 24-е изд., испр. — Л.: Химия, 1985. — С. 492. — 702 с.
- ↑ Р Смит., Полупроводники: Пер. с англ. — М.: Мир, 1982. — 560 с, ил.
- ↑ Зи С., Физика полупроводниковых приборов: В 2 книгах. Кн. 1. Пер. с англ. — М.: Мир, 1984. — 456 с., ил.
- ↑ Коледов Л. А. Технологии и конструкции микросхем, микропроцессоров и микросборок: Учебное пособие // 2-е изд., испр. и доп. — СПб.: Издательство «Лань», 2007. — С. 200—201. — ISBN 978-5-8114-0766-8.
- ↑ Martin, Keith R. Chapter 14. Silicon: The Health Benefits of a Metalloid // Interrelations between Essential Metal Ions and Human Diseases / Astrid Sigel ; Helmut Sigel ; Roland K.O. Sigel. — Springer, 2013. — Vol. 13. — P. 451–473. — ISBN 978-94-007-7499-5. — doi:10.1007/978-94-007-7500-8_14.
- ↑ Jugdaohsingh, R. (Mar-Apr 2007). "Silicon and bone health". The Journal of Nutrition, Health and Aging. 11 (2): 99—110. PMC 2658806. PMID 17435952.
{{cite journal}}
: Википедия:Обслуживание CS1 (формат даты) (ссылка)
Литература
- Самсонов. Г. В. Силициды и их использование в технике. — Киев, Изд-во АН УССР, 1959. — 204 с. с илл.