Формула Циолковского

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Формула Циолковского определяет скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, неизменной по направлению, при отсутствии всех других сил. Эта скорость называется характеристической:

где:

  •  — конечная скорость летательного аппарата, которая для случая маневра в космосе при орбитальных манёврах и межпланетных перелетах часто обозначается ΔV, также именуется характеристической скоростью.
  •  — удельный импульс ракетного двигателя (отношение тяги двигателя к секундному расходу массы топлива);
  •  — начальная масса летательного аппарата (полезная нагрузка + конструкция аппарата + топливо);
  •  — конечная масса летательного аппарата (полезная нагрузка + конструкция аппарата).

Эта формула была выведена К. Э. Циолковским в рукописи «Ракета» 10 (22) мая 1897[1].

Однако первыми уравнение движения тела с переменной массой решили английские исследователи У. Мур (англ. William Moore) в 1810—1811 годах, а также П. Г. Тэйт и У. Дж. Стил из Кембриджского университета в 1856 году.

Формула Циолковского может быть получена путём интегрирования дифференциального уравнения Мещерского для материальной точки переменной массы:

,

где:

  •  — масса точки;
  •  — скорость точки;
  •  — относительная скорость, с которой движется отделяющаяся от точки часть её массы.

Для ракетного двигателя эта величина и составляет его удельный импульс [2]

Для многоступенчатой ракеты конечная скорость рассчитывается как сумма скоростей, полученных по формуле Циолковского отдельно для каждой ступени, причем при расчёте характеристической скорости каждой ступени к её начальной и конечной массе добавляется суммарная начальная масса всех последующих ступеней.

Введем обозначения:

  •  — масса заправленной -й ступени ракеты;
  •  — масса -й ступени без топлива;
  •  — удельный импульс двигателя -й ступени;
  •  — масса полезной нагрузки;
  •  — число ступеней ракеты.

Тогда формула Циолковского для многоступенчатой ракеты может быть записана в следующем виде:

Отличие реальной скорости ракеты от характеристической[править | править код]

Поскольку в условиях реального полёта на ракету кроме тяги двигателей действуют и другие силы, скорость, развиваемая ракетами в этих условиях, как правило, ниже характеристической из-за потерь, вызываемых силами гравитации, сопротивления среды и другими факторами.

В следующей таблице приведён баланс скоростей ракеты Сатурн V при выводе корабля Аполлон на траекторию полёта к Луне[3].

Ступень Характеристическая скорость, м/c Гравитационные потери, м/c Аэродинамические потери, м/c Потери на управление, м/c Фактическая скорость, м/c
Первая (S-IC) 3660 1220 46 0 2394
Вторая (S-II) 4725 335 0 183 4207
Третья (S-IVB) 4120 122 0 4,5 3993,5
В сумме 12505 1677 46 187,5 10594,5[4]

Как видно из таблицы, гравитационная составляющая является наибольшей в общей величине потерь. Гравитационные потери возникают из-за того, что ракета, стартуя вертикально, не только разгоняется, но и набирает высоту, преодолевая тяготение Земли, и на это также расходуется топливо. Величина этих потерь вычисляется по формуле:[5]

,

где и  — местное ускорение гравитации и угол между вектором силы тяги двигателя и местным вектором гравитации, соответственно, являющиеся функциями времени по программе полёта.

Как видно из таблицы, наибольшая часть этих потерь приходится на участок полёта первой ступени. Это объясняется тем, что на этом участке траектория отклоняется от вертикали в меньшей степени, чем на участках последующих ступеней, и значение близко к максимальному значению — 1.

Аэродинамические потери вызваны сопротивлением воздушной среды при движении ракеты в ней и рассчитываются по формуле:

,

где  — сила лобового аэродинамического сопротивления, а  — текущая масса ракеты.

Основные потери от сопротивления воздуха также приходятся на участок работы 1-й ступени ракеты, так как этот участок проходит в нижних, наиболее плотных слоях атмосферы.

Корабль должен быть выведен на орбиту со строго определёнными параметрами, для этого система управления на активном участке полёта разворачивает ракету по определённой программе, при этом направление тяги двигателя отклоняется от текущего направления движения ракеты, а это влечёт за собой потери скорости на управление, которые рассчитываются по формуле:

,

где  — текущая сила тяги двигателя,  — текущая масса ракеты, а  — угол между векторами тяги и скорости ракеты.

Наибольшая часть потерь на управление ракеты приходится на участок полёта 2-й ступени, поскольку именно на этом участке происходит переход от вертикального полёта в горизонтальный, и вектор тяги двигателя в наибольшей степени отклоняется по направлению от вектора скорости ракеты.

Использование формулы Циолковского при проектировании ракет[править | править код]

Выведенная в конце XIX века, формула Циолковского и сегодня составляет важную часть математического аппарата, используемого при проектировании ракет, в частности, при определении их основных массовых характеристик.

Путём несложных преобразований формулы получаем следующее уравнение:

(1)

Это уравнение дает отношение начальной массы ракеты к её конечной массе при заданных значениях конечной скорости ракеты и удельного импульса.

Введём следующие обозначения:

  •  — масса полезного груза;
  •  — масса конструкции ракеты;
  •  — масса топлива.

Масса конструкции ракеты в большом диапазоне значений зависит от массы топлива почти линейно: чем больше запас топлива, тем больше размеры и масса ёмкостей для его хранения, больше масса несущих элементов конструкции, мощнее (следовательно, массивнее) двигательная установка. Выразим эту зависимость в виде:

где  — коэффициент, показывающий, какое количество топлива приходится на единицу массы конструкции.

При рациональном конструировании этот коэффициент в первую очередь зависит от характеристик (плотности и прочности) конструкционных материалов, используемых в производстве ракеты. Чем прочнее и легче используемые материалы, тем выше значение коэффициента . Этот коэффициент зависит также от усреднённой плотности топлива (для менее плотного топлива требуются ёмкости бо́льшего размера и массы, что ведёт к снижению значения ).

Предыдущее уравнение может быть записано в виде:

,

что путём элементарных преобразований приводится к виду:

Эта форма уравнения Циолковского позволяет рассчитать массу топлива, необходимого для достижения одноступенчатой ракетой заданной характеристической скорости, при заданных массе полезного груза, значении удельного импульса и значении коэффициента . Формула имеет смысл, только когда значение, получающееся при подстановке исходных данных, положительно. Поскольку экспонента для положительного аргумента всегда больше 1, числитель формулы всегда положителен, следовательно, положительным должен быть и знаменатель этой формулы:

, иначе говоря,

Это неравенство является критерием достижимости одноступенчатой ракетой заданной скорости при заданных значениях удельного импульса и коэффициента . Если неравенство не выполняется, заданная скорость не может быть достигнута ни при каких затратах топлива: с увеличением количества топлива будет возрастать и масса конструкции ракеты и отношение начальной массы ракеты к конечной никогда не достигнет значения, требуемого формулой Циолковского для достижения заданной скорости.

Пример расчёта массы ракеты[править | править код]

Требуется вывести искусственный спутник Земли массой т на круговую орбиту высотой 250 км. Располагаемый двигатель имеет удельный импульс м/c. Коэффициент означает, что масса конструкции составляет 10 % от массы заправленной ракеты (ступени). Определим массу ракеты-носителя.

Первая космическая скорость для выбранной орбиты составляет 7759,4 м/с, к которой добавляются предполагаемые потери от гравитации 600 м/c, характеристическая скорость, таким образом, составит м/c (остальными потерями в первом приближении можно пренебречь). При таких параметрах величина . Неравенство (4) не выполняется, следовательно, одноступенчатой ракетой при данных условиях достижение поставленной цели невозможно.

Данный расчет является упрощенным и не учитывает затрат на изменение потенциальной энергии тела, и при его прямом применении возникает иллюзия, что затраты уменьшаются с ростом высоты орбиты. В реальности без учета потерь на сопротивление атмосферы и гравитационных потерь за время вывода на орбиту потребная скорость (мгновенно приданная телу на уровне нулевой высоты над поверхностью) оказывается выше. Её можно примерно определить, применив закон сохранения механической энергии (гипотетическая эллиптическая орбита с перицентром в точке касания Земли и апоцентром на высоте целевой орбиты):

,

где r — средний радиус Земли, а R — высота круговой орбиты (с учетом радиуса Земли, то есть R = r+H); .

Если принять скорость в перицентре равной круговой на уровне поверхности Земли (), то:

, или

Это приближение не учитывает импульсов на переход с круговой орбиты Земли на эллиптическую и с эллиптической на новую круговую, а также применимо только к хомановским переходам (то есть применение для параболических и гиперболических переходов не работает), но много точнее, чем просто принимать за потребную скорость первую космическую для широкого диапазона высот НОО.

Тогда на высоте 250 км потребная скорость для вывода составит 8,063 м/с, а не 7,764, а для ГСО (35 786 км над уровнем Земли) — уже 10,762 м/с, а не 3,077 м/с, как было бы при игнорировании затрат на изменение потенциальной энергии.

Расчёт для двуступенчатой ракеты[править | править код]

Разделим пополам характеристическую скорость, что составит характеристическую скорость для каждой из ступеней двуступенчатой ракеты: м/c. На этот раз , что удовлетворяет критерию достижимости (4), и, подставляя в формулы (3) и (2) значения, для второй ступени получаем:

  • т;
  • т.

Таким образом, полная масса второй ступени составляет 55,9 т.

Для первой ступени к массе полезной нагрузки добавляется полная масса второй ступени; после соответствующей подстановки получаем:

  • т;
  • т.

Таким образом, полная масса первой ступени составляет 368,1 т, а общая масса двухступенчатой ракеты с полезным грузом составит 10+55,9+368,1 = 434 т. Аналогичным образом выполняются расчёты для бо́льшего количества ступеней. В результате получаем, что стартовая масса трёхступенчатой ракеты составит 323,1 т, четырёхступенчатой — 294,2 т, пятиступенчатой — 281 т.

На этом примере видно, как оправдывается многоступенчатость в ракетостроении: при той же конечной скорости ракета с бо́льшим числом ступеней имеет меньшую массу.

Эти результаты получены в предположении, что коэффициент конструктивного совершенства ракеты остаётся постоянным, независимо от количества ступеней. Более тщательное рассмотрение показывает, что это сильное упрощение. Ступени соединяются между собой специальными секциями-переходниками — несущими конструкциями, каждая из которых должна выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значение перегрузки, которую испытывает ракета на всех участках полёта, на которых переходник входит в состав ракеты. С увеличением числа ступеней их суммарная масса уменьшается, в то время как количество и суммарная масса переходников возрастают, что ведёт к снижению коэффициента , а, вместе с ним, и положительного эффекта многоступенчатости. В современной практике ракетостроения более четырёх ступеней, как правило, не делается.

Такого рода расчёты выполняются не только на первом этапе проектирования — при выборе варианта компоновки ракеты, но и на последующих стадиях проектирования, по мере детализации конструкции, формула Циолковского постоянно используется при поверочных расчётах, когда характеристические скорости пересчитываются, с учётом сложившихся из конкретных деталей соотношений начальной и конечной массы ракеты (ступени), конкретных характеристик двигательной установки, уточнения потерь скорости после расчёта программы полёта на активном участке, и т. д., чтобы контролировать достижение ракетой заданной скорости.

Обобщённая формула Циолковского[править | править код]

Для ракеты, летящей со скоростью, близкой к скорости света, справедлива обобщённая формула Циолковского:

,

где  — скорость света[6]. Для фотонной ракеты и формула имеет вид:

,

Скорость фотонной ракеты вычисляется по формуле:

См. также[править | править код]

Примечания[править | править код]

  1. Архив Российской академии наук (АРАН). Ф. 555. Оп. 1. Д. 32. Лл. 1—2, 5, 11, 20.
  2. Для теплового ракетного двигателя это справедливо при равенстве давлений на срезе сопла и в окружающей среде. Формула Циолковского сохраняет свою справедливость независимо от соблюдения этого условия.
  3. Пилотируемые полёты на Луну, конструкция и характеристики SATURN V APOLLO. Реферат ВИНИТИ. — М., 1973.
  4. К этой величине добавляется скорость вращения Земли на широте мыса Канаверал, с которого производились пуски по программе «Аполлон» — 406 м/с. Таким образом корабль Аполлон стартовал к Луне со скоростью 11 000 м/с. На высоте 500 км, (апогей околоземной орбиты, с которой корабль переходил на траекторию полёта к Луне) вторая космическая скорость составляет 10 772 м/c.
  5. Феодосьев В., Синярев Г. Введение в ракетную технику. 2-е изд., перераб. и доп. — М.: Оборонгиз, 1961.
  6. Левантовский, 1980, с. 444.

Литература[править | править код]

  • Левантовский В. И. Механика космического полета в элементарном изложении. — М.: Наука, 1980. — 512 с.